Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Histopathology ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477366

RESUMEN

AIMS: Immune checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1) have shown promising clinical outcomes in urothelial carcinoma (UC). The combined positive score (CPS) quantifies PD-L1 22C3 expression in UC, but it can vary between pathologists due to the consideration of both immune and tumour cell positivity. METHODS AND RESULTS: An artificial intelligence (AI)-powered PD-L1 CPS analyser was developed using 1,275,907 cells and 6175.42 mm2 of tissue annotated by pathologists, extracted from 400 PD-L1 22C3-stained whole slide images of UC. We validated the AI model on 543 UC PD-L1 22C3 cases collected from three institutions. There were 446 cases (82.1%) where the CPS results (CPS ≥10 or <10) were in complete agreement between three pathologists, and 486 cases (89.5%) where the AI-powered CPS results matched the consensus of two or more pathologists. In the pathologist's assessment of the CPS, statistically significant differences were noted depending on the source hospital (P = 0.003). Three pathologists reevaluated discrepancy cases with AI-powered CPS results. After using the AI as a guide and revising, the complete agreement increased to 93.9%. The AI model contributed to improving the concordance between pathologists across various factors including hospital, specimen type, pathologic T stage, histologic subtypes, and dominant PD-L1-positive cell type. In the revised results, the evaluation discordance among slides from different hospitals was mitigated. CONCLUSION: This study suggests that AI models can help pathologists to reduce discrepancies between pathologists in quantifying immunohistochemistry including PD-L1 22C3 CPS, especially when evaluating data from different institutions, such as in a telepathology setting.

2.
Front Immunol ; 13: 1038089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36660547

RESUMEN

Background: Enrichment of tumor-infiltrating lymphocytes (TIL) in the tumor microenvironment (TME) is a reliable biomarker of immune checkpoint inhibitors (ICI) in non-small cell lung cancer (NSCLC). Phenotyping through computed tomography (CT) radiomics has the overcome the limitations of tissue-based assessment, including for TIL analysis. Here, we assess TIL enrichment objectively using an artificial intelligence-powered TIL analysis in hematoxylin and eosin (H&E) image and analyze its association with quantitative radiomic features (RFs). Clinical significance of the selected RFs is then validated in the independent NSCLC patients who received ICI. Methods: In the training cohort containing both tumor tissue samples and corresponding CT images obtained within 1 month, we extracted 86 RFs from the CT images. The TIL enrichment score (TILes) was defined as the fraction of tissue area with high intra-tumoral or stromal TIL density divided by the whole TME area, as measured on an H&E slide. From the corresponding CT images, the least absolute shrinkage and selection operator model was then developed using features that were significantly associated with TIL enrichment. The CT model was applied to CT images from the validation cohort, which included NSCLC patients who received ICI monotherapy. Results: A total of 220 NSCLC samples were included in the training cohort. After filtering the RFs, two features, gray level variance (coefficient 1.71 x 10-3) and large area low gray level emphasis (coefficient -2.48 x 10-5), were included in the model. The two features were both computed from the size-zone matrix, which has strength in reflecting intralesional texture heterogeneity. In the validation cohort, the patients with high predicted TILes (≥ median) had significantly prolonged progression-free survival compared to those with low predicted TILes (median 4.0 months [95% CI 2.2-5.7] versus 2.1 months [95% CI 1.6-3.1], p = 0.002). Patients who experienced a response to ICI or stable disease with ICI had higher predicted TILes compared with the patients who experienced progressive disease as the best response (p = 0.001, p = 0.036, respectively). Predicted TILes was significantly associated with progression-free survival independent of PD-L1 status. Conclusions: In this CT radiomics model, predicted TILes was significantly associated with ICI outcomes in NSCLC patients. Analyzing TME through radiomics may overcome the limitations of tissue-based analysis and assist clinical decisions regarding ICI.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Linfocitos Infiltrantes de Tumor , Inteligencia Artificial , Tomografía Computarizada por Rayos X , Hematoxilina/uso terapéutico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...