Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121664

RESUMEN

The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization. HCS1-excessiveness reduces HYL1 that disrupts miRNA biogenesis, while HCS1-deficiency accumulates HYL1. Consistently, we identified the HYL1K154A mutant that is insensitive to the proteolytic activity of HCS1, confirming the importance of HCS1 in HYL1 proteostasis. Moreover, HCS1-activity is regulated by light/dark transition. Under light, cytoplasmic CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase suppresses HCS1-activity. COP1 sterically inhibits HCS1 by obstructing HYL1 access into the catalytic sites of HCS1. In contrast, darkness unshackles HCS1-activity for HYL1-destabilization due to nuclear COP1 relocation. Overall, the COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Plant ; 13(3): 431-445, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678531

RESUMEN

The shift of dark-grown seedlings into light causes enormous transcriptome changes followed by a dramatic developmental transition. Here, we show that microRNA (miRNA) biogenesis also undergoes regulatory changes during de-etiolation. Etiolated seedlings maintain low levels of primary miRNAs (pri-miRNAs) and miRNA processing core proteins, such as Dicer-like 1, SERRATE, and HYPONASTIC LEAVES 1, whereas during de-etiolation both pri-miRNAs and the processing components accumulate to high levels. However, the levels of most miRNAs do not notably increase in response to light. To reconcile this inconsistency, we demonstrated that an unknown suppressor decreases miRNA-processing activity and light-induced SMALL RNA DEGRADING NUCLEASE 1 shortens the half-life of several miRNAs in de-etiolated seedlings. Taken together, these data suggest a novel mechanism, miRNA-biogenetic inconsistency, which accounts for the intricacy of miRNA biogenesis during de-etiolation. This mechanism is essential for the survival of de-etiolated seedlings after long-term skotomorphogenesis and their optimal adaptation to ever-changing light conditions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/efectos de la radiación , Luz , MicroARNs/biosíntesis , Plantones/fisiología , Plantones/efectos de la radiación , Arabidopsis/fisiología , Transcriptoma/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación
3.
BMC Genomics ; 20(1): 326, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035917

RESUMEN

BACKGROUND: Controlled turnover of proteins as mediated by the ubiquitin proteasome system (UPS) is an important element in plant defense against environmental and pathogen stresses. E3 ligases play a central role in subjecting proteins to hydrolysis by the UPS. Recently, it has been demonstrated that a specific class of E3 ligases termed the U-box ligases are directly associated with the defense mechanisms against abiotic and biotic stresses in several plants. However, no studies on U-box E3 ligases have been performed in one of the important staple crops, barley. RESULTS: In this study, we identified 67 putative U-box E3 ligases from the barley genome and expressed sequence tags (ESTs). Similar to Arabidopsis and rice U-box E3 ligases, most of barley U-box E3 ligases possess evolutionary well-conserved domain organizations. Based on the domain compositions and arrangements, the barley U-box proteins were classified into eight different classes. Along with this new classification, we refined the previously reported classifications of U-box E3 ligase genes in Arabidopsis and rice. Furthermore, we investigated the expression profile of 67 U-box E3 ligase genes in response to drought stress and pathogen infection. We observed that many U-box E3 ligase genes were specifically up-and-down regulated by drought stress or by fungal infection, implying their possible roles of some U-box E3 ligase genes in the stress responses. CONCLUSION: This study reports the classification of U-box E3 ligases in barley and their expression profiles against drought stress and pathogen infection. Therefore, the classification and expression profiling of barley U-box genes can be used as a platform to functionally define the stress-related E3 ligases in barley.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Interacciones Huésped-Parásitos/genética , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Ascomicetos/patogenicidad , Sequías , Genoma de Planta , Hordeum/crecimiento & desarrollo , Oryza/genética , Filogenia , Proteínas de Plantas/clasificación , Plantones/microbiología , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/clasificación
4.
Protein Expr Purif ; 159: 34-41, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30880170

RESUMEN

The plant protein production system is a platform that can not only reduce production costs but also produce monoclonal antibodies that do not have the risk of residual proteins from the host. However, due to the difference between post-translational processes in plants and animals, there may be a modification in the Fab region of the monoclonal antibody produced in the plant; thus, it is necessary to compare the antigen affinity of this antibody with that of the prototype. In this study, ofatumumab, a fully human anti-CD20 IgG1κ monoclonal antibody used for its non-cross resistance to rituximab, was expressed in Nicotiana benthamiana, and its affinities and efficacies were compared with those of native ofatumumab produced from CHO cells. Two forms of plant ofatumumab (with or without HDEL-tag) were generated and their production yields were compared. The HDEL-tagged ofatumumab was more expressed in plants than the form without HDEL-tag. The specificity of the target recognition of plant-derived ofatumumab was confirmed by mCherry-CD20-expressing HEK cells via immuno-staining, and the capping of CD20 after ofatumumab binding was also confirmed using Ramos B cells. In the functional equivalence tests, the binding affinities and complement-dependent cell cytotoxicity efficacy of plant-ofatumumab-HDEL and plant-ofatumumab without HDEL were significantly reduced compared to those of CHO-derived ofatumumab. Therefore, we suggest that although ofatumumab is not a good candidate as a template for plant-derived monoclonal antibodies because of its decreased affinity when produced in plants, it is an interesting target to study the differences between post-translational modifications in mammals and plants.


Asunto(s)
Anticuerpos Monoclonales Humanizados/genética , Fragmentos Fab de Inmunoglobulinas/química , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/metabolismo , Antígenos CD20/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis , Linfocitos B , Células CHO , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cricetulus , Citotoxicidad Inmunológica/efectos de los fármacos , Células HEK293 , Humanos , Conformación Proteica , Rituximab/metabolismo
5.
Dev Cell ; 46(2): 236-247.e6, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-30016624

RESUMEN

Light is the most influential environmental stimulus for plant growth. In response to deficient light, plants reprogram their development to adjust their growth in search for a light source. A fine reprogramming of gene expression orchestrates this adaptive trait. Here we show that plants alter microRNA (miRNA) biogenesis in response to light transition. When plants suffer an unusual extended period of light deprivation, the miRNA biogenesis factor HYPONASTIC LEAVES 1 (HYL1) is degraded but an inactive pool of phosphorylated protein remains stable inside the nucleus. Degradation of HYL1 leads to the release of gene silencing, triggering a proper response to dark and shade. Upon light restoration, a quick dephosphorylation of HYL1 leads to the reactivation of miRNA biogenesis and a switch toward a developmental program that maximizes the light uptake. Our findings define a unique and fast regulatory mechanism controlling the plant silencing machinery during plant light response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Silenciador del Gen , Luz , MicroARNs/genética , Mutación , Fosforilación , Hojas de la Planta/metabolismo , Procesamiento Postranscripcional del ARN/fisiología
6.
Proc Natl Acad Sci U S A ; 114(46): E10009-E10017, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087340

RESUMEN

Ubiquitin E3 ligases are crucial for eliminating misfolded proteins before they form cytotoxic aggregates that threaten cell fitness and survival. However, it remains unclear how emerging misfolded proteins in the cytoplasm can be selectively recognized and eliminated by E3 ligases in plants. We found that Misfolded Protein Sensing RING E3 ligase 1 (MPSR1) is an indispensable E3 ligase required for plant survival after protein-damaging stress. Under no stress, MPSR1 is prone to rapid degradation by the 26S proteasome, concealing its protein quality control (PQC) E3 ligase activity. Upon proteotoxic stress, MPSR1 directly senses incipient misfolded proteins and tethers ubiquitins for subsequent degradation. Furthermore, MPSR1 sustains the structural integrity of the proteasome complex at the initial stage of proteotoxic stress. Here, we suggest that the MPSR1 pathway is a constitutive mechanism for proteostasis under protein-damaging stress, as a front-line surveillance system in the cytoplasm.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pliegue de Proteína , Proteostasis , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Citoplasma/metabolismo , ADN de Plantas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes , Análisis de Secuencia , Análisis de Secuencia de ARN , Estrés Psicológico , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/metabolismo , Levaduras/genética
7.
BMB Rep ; 50(8): 393-400, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28712388

RESUMEN

Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].


Asunto(s)
Plantas/genética , Plantas/metabolismo , Estrés Fisiológico/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
8.
Plant Physiol ; 174(4): 2515-2531, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28626006

RESUMEN

AtAIRP2 is a cytosolic RING-type E3 ubiquitin ligase that positively regulates an abscisic acid (ABA) response in Arabidopsis (Arabidopsis thaliana). Yeast two-hybrid screening using AtAIRP2 as bait identified ATP1 (AtAIRP2 Target Protein1) as a substrate of AtAIRP2. ATP1 was found to be identical to SDIRIP1, which was reported recently to be a negative factor in ABA signaling and a target protein of the RING E3 ligase SDIR1. Accordingly, ATP1 was renamed ATP1/SDIRIP1. A specific interaction between AtAIRP2 and ATP1/SDIRIP1 and ubiquitination of ATP1/SDIRIP1 by AtAIRP2 were demonstrated in vitro and in planta. The turnover of ATP1/SDIRIP1 was regulated by AtAIRP2 in cell-free degradation and protoplast cotransfection assays. The ABA-mediated germination assay of 35S:ATP1/SDIRIP1-RNAi/atairp2 double mutant progeny revealed that ATP1/SDIRIP1 acts downstream of AtAIRP2. AtAIRP2 and SDIR1 reciprocally complemented the ABA- and salt-insensitive germination phenotypes of sdir1 and atairp2 mutants, respectively, indicating their combinatory roles in seed germination. Subcellular localization and bimolecular fluorescence complementation experiments in the presence of MG132, a 26S proteasome inhibitor, showed that AtAIRP2 and ATP1/SDIRIP1 were colocalized to the cytosolic spherical body, which lies in close proximity to the nucleus, in tobacco (Nicotiana benthamiana) leaf cells. The 26S proteasome subunits RPN12a and RPT1 and the molecular chaperones HSP70 and HSP101 were colocalized to these discrete punctae-like structures. These results raised the possibility that AtAIRP2 and ATP1/SDIRIP1 interact in the cytosolic spherical compartment. Collectively, our data suggest that the down-regulation of ATP1/SDIRIP1 by AtAIRP2 and SDIR1 RING E3 ubiquitin ligases is critical for ABA and high-salinity responses during germination in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPasas de Translocación de Protón/metabolismo , Salinidad , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Compartimento Celular , Citosol/efectos de los fármacos , Citosol/metabolismo , Regulación hacia Abajo/genética , Epistasis Genética/efectos de los fármacos , Prueba de Complementación Genética , Germinación/efectos de los fármacos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Epidermis de la Planta/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Nicotiana/citología
9.
FEBS Lett ; 591(10): 1383-1393, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28321834

RESUMEN

A highly coordinated complex known as the microprocessor precisely processes primary transcripts of MIRNA genes into mature miRNAs. In plants, the microprocessor minimally consists of three components: Dicer-like protein 1 (DCL1), HYPONASTIC LEAF 1 (HYL1), and SERRATE (SE). To precisely modulate miRNA maturation, the microprocessor cooperates with at least 12 proteins in plants. In addition, we here show the involvement of a novel gene, HYL1-interacting GIY-YIG-like endonuclease (HIGLE). The encoded protein has a GIY-YIG domain that is generally found within a class of homing endonucleases. HIGLE directly interacts with the microprocessor components HYL1 and SE. Unlike the functions of other GIY-YIG endonucleases, the catalytic core of HIGLE has both DNase and RNase activities that sufficiently processes miRNA precursors into short fragments in vitro.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Endorribonucleasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Endonucleasas/química , Endonucleasas/genética , Endorribonucleasas/química , Endorribonucleasas/genética , MicroARNs/metabolismo , Filogenia , Dominios Proteicos , Técnicas del Sistema de Dos Híbridos
10.
Mol Cells ; 39(8): 581-6, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27440184

RESUMEN

Post-translational modifications (PTMs) of proteins are essential to increase the functional diversity of the proteome. By adding chemical groups to proteins, or degrading entire proteins by phosphorylation, glycosylation, ubiquitination, neddylation, acetylation, lipidation, and proteolysis, the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date, several studies have shown that the proteolytic regulation of AGOs is important for host-pathogen interactions. DRB4 is regulated by the ubiquitin-proteasome system, and the degradation of HYL1 is modulated by a de-etiolation repressor, COP1, and an unknown cytoplasmic protease. Here, we discuss current findings on the PTMs of microprocessor and RNA silencing components in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Plantas , Proteínas de Unión al ARN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , MicroARNs/genética , Procesamiento Proteico-Postraduccional , Proteolisis , Interferencia de ARN , Proteínas de Unión al ARN/genética , Ubiquitina/metabolismo
11.
Nucleic Acids Res ; 44(6): e57, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26681688

RESUMEN

MicroRNAs (miRNAs), small non-coding RNA molecules, are important biomarkers for research and medical purposes. Here, we describe the development of a fast and simple method using highly fluorescent oligonucleotide-silver nanocluster probes (DNA/AgNCs) to efficiently detect specific miRNAs. Due to the great sequence diversity of miRNAs in humans and other organisms, a uniform strategy for miRNA detection is attractive. The concept presented is an oligonucleotide-based locking-to-unlocking system that can be endowed with miRNA complementarity while maintaining the same secondary structure. The locking-to-unlocking system is based on fold-back anchored DNA templates that consist of a cytosine-rich loop for AgNCs stabilization, an miRNA recognition site and an overlap region for hairpin stabilization. When an miRNA is recognized, fluorescence in the visible region is specifically extinguished in a concentration-dependent manner. Here, the exact composition of the fold-back anchor for the locking-to-unlocking system has been systematically optimized, balancing propensity for loop-structure formation, encapsulation of emissive AgNCs and target sensitivity. It is demonstrated that the applied strategy successfully can detect a number of cancer related miRNAs in RNA extracts from human cancer cell lines.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas del Metal/química , MicroARNs/análisis , Sondas de Oligonucleótidos/química , ARN Neoplásico/análisis , Emparejamiento Base , Secuencia de Bases , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Citosina/química , Colorantes Fluorescentes/síntesis química , Humanos , Nanopartículas del Metal/ultraestructura , MicroARNs/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sondas de Oligonucleótidos/síntesis química , ARN Neoplásico/metabolismo , Plata/química , Espectrometría de Fluorescencia
12.
Biochem Biophys Res Commun ; 464(4): 994-999, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26188517

RESUMEN

Drought stress strongly affects plant growth and development, directly connected with crop yields, accordingly. However, related to the function of U-BOX E3 ligases, the underlying molecular mechanisms of desiccation stress response in plants are still largely unknown. Here we report that PUB22 and PUB23, two U-box E3 ligase homologs, tether ubiquitins to 19S proteasome regulatory particle (RP) subunit RPN6, leading to its degradation. RPN6 was identified as an interacting substrate of PUB22 by yeast two-hybrid screening, and in vitro pull-down assay confirmed that RPN6 interacts not only with PUB22, but also with PUB23. Both PUB22 and PUB23 were able to conjugate ubiquitins on RPN6 in vitro. Furthermore, RPN6 showed a shorter protein half-life in PUB22 overexpressing plants than in wild-type, besides RPN6 was significantly stabilized in pub22pub23 double knockout plants. Taken together, these results solidify a notion that PUB22 and PUB23 can alter the activity of 26S proteasome in response to drought stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequías , Estabilidad de Enzimas , Técnicas de Inactivación de Genes , Genes de Plantas , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Subunidades de Proteína , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
13.
Plant Physiol ; 160(1): 556-68, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22829319

RESUMEN

AtPUB18 and AtPUB19 are homologous U-box E3 ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). AtPUB19 is a negative regulator of abscisic acid (ABA)-mediated drought responses, whereas the role of AtPUB18 in drought responses is unknown. Here, loss-of-function and overexpression tests identified AtPUB18 as a negative regulator in ABA-mediated stomatal closure and water stress responses. The atpub18-2atpub19-3 double mutant line displayed more sensitivity to ABA and enhanced drought tolerance than each single mutant plant; therefore, AtPUB18 and AtPUB19 are agonistic. Stomatal closure of the atpub18-2atpub19-3 mutant was hypersensitive to hydrogen peroxide (H(2)O(2)) but not to calcium, suggesting that AtPUB18 and AtPUB19 exert negative effects on the ABA signaling pathway downstream of H(2)O(2) and upstream of calcium. AtPUB22 and AtPUB23 are other U-box E3 negative regulators of drought responses. Although atpub22atpub23 was more tolerant to drought stress relative to wild-type plants, its ABA-mediated stomatal movements were highly similar to those of wild-type plants. The atpub18-2atpub19-3atpub22atpub23 quadruple mutant exhibited enhanced tolerance to drought stress as compared with each atpub18-2atpub19-3 and atpub22atpub23 double mutant progeny; however, its stomatal behavior was almost identical to the atpub18-2atpub19-3 double mutant in the presence of ABA, H(2)O(2), and calcium. Overexpression of AtPUB18 and AtPUB19 in atpub22atpub23 effectively hindered ABA-dependent stomatal closure, but overexpression of AtPUB22 and AtPUB23 in atpub18-2atpub19-3 did not inhibit ABA-enhanced stomatal closure, highlighting their ABA-independent roles. Overall, these results suggest that AtPUB18 has a linked function with AtPUB19, but is independent from AtPUB22 and AtPUB23, in negative regulation of ABA-mediated drought stress responses.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Sequías , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo , Ácido Abscísico/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Clorofila/análisis , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética/métodos , Peróxido de Hidrógeno/farmacología , Manitol/farmacología , Datos de Secuencia Molecular , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética
14.
Biochem Biophys Res Commun ; 420(1): 141-7, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22405823

RESUMEN

Among approximately 480 RING domain-containing E3 Ub ligases in Arabidopsis, three, At3g46620, At5g59550, and At2g39720, have a domain-of-unknown-function (DUF) 1117 motif in their C-terminal regions. At3g46620 and At5g59550 were identified as homologous ABA- and drought-induced RING-DUF1117 genes and were designated AtRDUF1 and AtRDUF2, respectively. Single and double knock-out mutations of AtRDUFs resulted in hyposensitive phenotypes toward ABA in terms of germination rate and stomatal closure and markedly reduced tolerance to drought stress relative to wild-type plants. These results are discussed in the context that AtRDUF1 and AtRDUF2 play combinatorial, but still distinguishable, roles in ABA-mediated dehydration stress responses.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Sequías , Dominios RING Finger , Estrés Fisiológico/genética , Ubiquitina-Proteína Ligasas/fisiología , Secuencias de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Datos de Secuencia Molecular , Mutación , Ubiquitina-Proteína Ligasas/genética
15.
Plant Physiol ; 157(4): 2240-57, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21969385

RESUMEN

The ubiquitin (Ub)-26S proteasome pathway is implicated in various cellular processes in higher plants. AtAIRP1, a C3H2C3-type RING (for Really Interesting New Gene) E3 Ub ligase, is a positive regulator in the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)-dependent drought response. Here, the AtAIRP2 (for Arabidopsis ABA-insensitive RING protein 2) gene was identified and characterized. AtAIRP2 encodes a cytosolic C3HC4-type RING E3 Ub ligase whose expression was markedly induced by ABA and dehydration stress. Thus, AtAIRP2 belongs to a different RING subclass than AtAIRP1 with a limited sequence identity. AtAIRP2-overexpressing transgenic (35S:AtAIRP2-sGFP) and atairp2 loss-of-function mutant plants exhibited hypersensitive and hyposensitive phenotypes, respectively, to ABA in terms of seed germination, root growth, and stomatal movement. 35S:AtAIRP2-sGFP plants were highly tolerant to severe drought stress, and atairp2 alleles were more susceptible to water stress than were wild-type plants. Higher levels of drought-induced hydrogen peroxide production were detected in 35S:AtAIRP2-sGFP as compared with atairp2 plants. ABA-inducible drought-related genes were up-regulated in 35S:AtAIRP2-sGFP and down-regulated in atairp2 progeny. The positive effects of AtAIRP2 on ABA-induced stress genes were dependent on SNF1-related protein kinases, key components of the ABA signaling pathway. Therefore, AtAIRP2 is involved in positive regulation of ABA-dependent drought stress responses. To address the functional relationship between AtAIRP1 and AtAIRP2, FLAG-AtAIRP1 and AtAIRP2-sGFP genes were ectopically expressed in atairp2-2 and atairp1 plants, respectively. Constitutive expression of FLAG-AtAIRP1 and AtAIRP2-sGFP in atairp2-2 and atairp1 plants, respectively, reciprocally rescued the loss-of-function ABA-insensitive phenotypes during germination. Additionally, atairp1/35S:AtAIRP2-sGFP and atairp2-2/35S:FLAG-AtAIRP1 complementation lines were more tolerant to dehydration stress relative to atairp1 and atairp2-2 single knockout plants. Overall, these results suggest that AtAIRP2 plays combinatory roles with AtAIRP1 in Arabidopsis ABA-mediated drought stress responses.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Citosol/enzimología , Citosol/metabolismo , Sequías , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Regiones Promotoras Genéticas , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Semillas/fisiología , Alineación de Secuencia , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba
16.
Plant Physiol ; 154(4): 1983-97, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20884812

RESUMEN

Ubiquitination is a eukaryotic posttranslational protein modification that is mediated by the cascade of E1, E2, and E3 ubiquitin (Ub) ligases and is involved in regulating numerous cellular functions. In this study, we obtained 100 different Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutant plants in which RING E3 Ub ligase genes were suppressed and monitored their phenotypes in the presence of exogenous abscisic acid (ABA), a plant stress hormone. One of these loss-of-function mutants displayed ABA-insensitive phenotypes at the germination stage and was named atairp1 (for Arabidopsis ABA-insensitive RING protein 1). AtAIRP1 encodes a cytosolic protein containing a single C3H2C3-type RING motif with in vitro E3 Ub ligase activity. AtAIRP1 was significantly induced by ABA and drought stress. In contrast to atairp1 mutant plants, AtAIRP1-overexpressing transgenic plants (35S:AtAIRP1-sGFP) were hypersensitive to exogenous ABA in terms of radicle emergence, cotyledon development, root elongation, and stomatal closure. Ectopic expression of AtAIRP1-sGFP in atairp1 effectively rescued the loss-of-function ABA-insensitive phenotype. Both 35S:AtAIRP1-sGFP and atairp1/35S:AtAIRP1-sGFP plants accumulated higher amounts of hydrogen peroxide in response to exogenous ABA than did wild-type and atairp1 mutant plants. AtAIRP1 overexpressors were markedly tolerant to severe drought stress, as opposed to atairp1, which was highly susceptible. The levels of drought stress-related genes and basic leucine zipper transcription factor genes were up-regulated in the 35S:AtAIRP1-sGFP lines relative to wild-type and atairp1 mutant plants in response to ABA. Overall, these results suggest that AtAIRP1, a C3H2C3-type RING E3 Ub ligase, is a positive regulator in the Arabidopsis ABA-dependent drought response.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Sequías , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Regulación hacia Arriba
17.
Mol Cells ; 28(4): 375-82, 2009 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-19812900

RESUMEN

The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , ARN sin Sentido/farmacología , Transducción de Señal , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal , Interferencia de ARN
18.
Plant Cell ; 20(7): 1899-914, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18664614

RESUMEN

Ubiquitination is involved in diverse cellular processes in higher plants. In this report, we describe Arabidopsis thaliana PUB22 and PUB23, two homologous U-box-containing E3 ubiquitin (Ub) ligases. The PUB22 and PUB23 genes were rapidly and coordinately induced by abiotic stresses but not by abscisic acid. PUB22- and PUB23-overexpressing transgenic plants were hypersensitive to drought stress. By contrast, loss-of-function pub22 and pub23 mutant plants were significantly more drought-tolerant, and a pub22 pub23 double mutant displayed even greater drought tolerance. These results indicate that PUB22 and PUB23 function as negative regulators in the water stress response. Yeast two-hybrid, in vitro pull-down, and in vivo coimmunoprecipitation experiments revealed that PUB22 and PUB23 physically interacted with RPN12a, a subunit of the 19S regulatory particle (RP) in the 26S proteasome. Bacterially expressed RPN12a was effectively ubiquitinated in a PUB-dependent fashion. RPN12a was highly ubiquitinated in 35S:PUB22 plants, but not in pub22 pub23 double mutant plants, consistent with RPN12a being a substrate of PUB22 and PUB23 in vivo. In water-stressed wild-type and PUB-overexpressing plants, a significant amount of RPN12a was dissociated from the 19S RP and appeared to be associated with small-molecular-mass protein complexes in cytosolic fractions, where PUB22 and PUB23 are localized. Overall, our results suggest that PUB22 and PUB23 coordinately control a drought signaling pathway by ubiquitinating cytosolic RPN12a in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sequías , Ubiquitina-Proteína Ligasas/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Cromatografía en Gel , Regulación de la Expresión Génica de las Plantas , Inmunoprecipitación , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
19.
Plant Physiol ; 142(4): 1664-82, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17041029

RESUMEN

The U-box motif is a conserved domain found in the diverse isoforms of E3 ubiquitin ligase in eukaryotes. From water-stressed hot pepper (Capsicum annuum L. cv Pukang) plants, we isolated C. annuum putative U-box protein 1 (CaPUB1), which encodes a protein containing a single U-box motif in its N-terminal region. In vitro ubiquitination and site-directed mutagenesis assays revealed that CaPUB1 possessed E3 ubiquitin ligase activity and that the U-box motif was indeed essential for its enzyme activity. RNA gel-blot analysis showed that CaPUB1 mRNA was induced rapidly by a broad spectrum of abiotic stresses, including drought, high salinity, cold temperature, and mechanical wounding, but not in response to ethylene, abscisic acid, or a bacterial pathogen, suggesting its role in the early events in the abiotic-related defense response. Because transgenic work was extremely difficult in hot pepper, in this study we overexpressed CaPUB1 in Arabidopsis (Arabidopsis thaliana) to provide cellular information on the function of this gene in the development and plant responses to abiotic stresses. Transgenic Arabidopsis plants that constitutively expressed the CaPUB1 gene under the control of the cauliflower mosaic virus 35S promoter had markedly longer hypocotyls and roots and grew more rapidly than the wild type, leading to an early bolting phenotype. Microscopic analysis showed that 35S::CaPUB1 roots had increased numbers of small-sized cells, resulting in disordered, highly populated cell layers in the cortex, endodermis, and stele. In addition, CaPUB1-overexpressing plants displayed increased sensitivity to water stress and mild salinity. These results indicate that CaPUB1 is functional in Arabidopsis cells, thereby effectively altering cell and tissue growth and also the response to abiotic stresses. Comparative proteomic analysis showed that the level of RPN6 protein, a non-ATPase subunit of the 26S proteasome complex, was significantly reduced in 35SCaPUB1 seedlings as compared to the wild type. Pull-down and ubiquitination assays demonstrated that RPN6 interacted physically with CaPUB1 and was ubiquitinated in a CaPUB1-dependent manner in vitro. Although the physiological function of CaPUB1 is not yet clear, there are several possibilities for its involvement in a subset of physiological responses to counteract dehydration and high-salinity stresses in transgenic Arabidopsis seedlings.


Asunto(s)
Capsicum/enzimología , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Capsicum/genética , Proliferación Celular , ADN Complementario/química , Electroforesis en Gel Bidimensional , Endopeptidasas/metabolismo , Escherichia coli/genética , Datos de Secuencia Molecular , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/metabolismo , Proteómica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...