Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Med Genomics ; 17(1): 166, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902747

RESUMEN

BACKGROUND: Mediators, genomic and epigenomic characteristics involving in metabolism of arachidonic acid by cyclooxygenase (COX) and lipoxygenase (ALOX) and hepatic activation of clopidogrel have been individually suggested as factors associated with resistance against aspirin and clopidogrel. The present multi-center prospective cohort study evaluated whether the mediators, genomic and epigenomic characteristics participating in arachidonic acid metabolism and clopidogrel activation could be factors that improve the prediction of the aspirin and clopidogrel resistance in addition to cardiovascular risks. METHODS: We enrolled 988 patients with transient ischemic attack and ischemic stroke who were evaluated for a recurrence of ischemic stroke to confirm clinical resistance, and measured aspirin (ARU) and P2Y12 reaction units (PRU) using VerifyNow to assess laboratory resistance 12 weeks after aspirin and clopidogrel administration. We investigated whether mediators, genotypes, and promoter methylation of genes involved in COX and ALOX metabolisms and clopidogrel activation could synergistically improve the prediction of ischemic stroke recurrence and the ARU and PRU levels by integrating to the established cardiovascular risk factors. RESULTS: The logistic model to predict the recurrence used thromboxane A synthase 1 (TXAS1, rs41708) A/A genotype and ALOX12 promoter methylation as independent variables, and, improved sensitivity of recurrence prediction from 3.4% before to 13.8% after adding the mediators, genomic and epigenomic variables to the cardiovascular risks. The linear model we used to predict the ARU level included leukotriene B4, COX2 (rs20417) C/G and thromboxane A2 receptor (rs1131882) A/A genotypes with the addition of COX1 and ALOX15 promoter methylations as variables. The linear PRU prediction model included G/A and prostaglandin I receptor (rs4987262) G/A genotypes, COX2 and TXAS1 promoter methylation, as well as cytochrome P450 2C19*2 (rs4244285) A/A, G/A, and *3 (rs4986893) A/A genotypes as variables. The linear models for predicting ARU (r = 0.291, R2 = 0.033, p < 0.01) and PRU (r = 0.503, R2 = 0.210, p < 0.001) levels had improved prediction performance after adding the genomic and epigenomic variables to the cardiovascular risks. CONCLUSIONS: This study demonstrates that different mediators, genomic and epigenomic characteristics of arachidonic acid metabolism and clopidogrel activation synergistically improved the prediction of the aspirin and clopidogrel resistance together with the cardiovascular risk factors. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov ; Unique identifier: NCT03823274.


Asunto(s)
Aspirina , Clopidogrel , Resistencia a Medicamentos , Humanos , Clopidogrel/uso terapéutico , Clopidogrel/farmacología , Masculino , Femenino , Aspirina/uso terapéutico , Aspirina/farmacología , Resistencia a Medicamentos/genética , Persona de Mediana Edad , Anciano , Epigenómica , Genómica , Estudios Prospectivos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Metilación de ADN/efectos de los fármacos
2.
Clin Epigenetics ; 15(1): 11, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658621

RESUMEN

BACKGROUND: Changes in gene-specific promoter methylation may result from aging and environmental influences. Atherosclerosis is associated with aging and environmental effects. Thus, promoter methylation profiling may be used as an epigenetic tool to evaluate the impact of aging and the environment on atherosclerosis development. However, gene-specific methylation changes are currently inadequate epigenetic markers for predicting atherosclerosis and cardiovascular disease pathogenesis. RESULTS: We profiled and validated changes in gene-specific promoter methylation associated with atherosclerosis using stenosis radiophenotypes of cranial vessels and blood inflammatory cells rather than direct sampling of atherosclerotic plaques. First, we profiled gene-specific promoter methylation changes using digital restriction enzyme analysis of methylation (DREAM) sequencing in peripheral blood mononuclear cells from eight samples each of cranial vessels with and without severe-stenosis radiophenotypes. Using DREAM sequencing profiling, 11 tags were detected in the promoter regions of the ACVR1C, ADCK5, EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PACSIN3, PAX8-AS1, TLDC1, and ZNF7 genes. Using methylation evaluation, we found that EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PAX8-AS1, and TLDC1 showed > 5% promoter methylation in non-plaque intima, atherosclerotic vascular tissues, and buffy coats. Using logistic regression analysis, we identified hypomethylation of MTNR1B as an independent variable for the stenosis radiophenotype prediction model by combining it with traditional atherosclerosis risk factors including age, hypertension history, and increases in creatinine, lipoprotein (a), and homocysteine. We performed fivefold cross-validation of the prediction model using 384 patients with ischemic stroke (50 [13%] no-stenosis and 334 [87%] > 1 stenosis radiophenotype). For the cross-validation, the training dataset included 70% of the dataset. The prediction model showed an accuracy of 0.887, specificity to predict stenosis radiophenotype of 0.940, sensitivity to predict no-stenosis radiophenotype of 0.533, and area under receiver operating characteristic curve of 0.877 to predict stenosis radiophenotype from the test dataset including 30% of the dataset. CONCLUSIONS: We identified and validated MTNR1B hypomethylation as an epigenetic marker to predict cranial vessel atherosclerosis using stenosis radiophenotypes and blood inflammatory cells rather than direct atherosclerotic plaque sampling.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Metilación de ADN , Leucocitos Mononucleares , Aterosclerosis/genética , Placa Aterosclerótica/genética , Epigénesis Genética , Receptores de Activinas Tipo I/genética , Receptor de Melatonina MT2/genética
3.
Microbiol Spectr ; 10(4): e0173422, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35758683

RESUMEN

Vancomycin and ß-lactams are clinically important antibiotics that inhibit the formation of peptidoglycan cross-links, but their binding targets are different. The binding target of vancomycin is d-alanine-d-alanine (d-Ala-d-Ala), whereas that of ß-lactam is penicillin-binding proteins (PBPs). In this study, we revealed the divergent effects of peptidoglycan (PG) carboxypeptidase DacA on vancomycin and ß-lactam resistance in Escherichia coli and Bacillus subtilis. The deletion of DacA induced sensitivity to most ß-lactams, whereas it induced strong resistance toward vancomycin. Notably, both phenotypes did not have a strong association with ld-transpeptidases, which are necessary for the formation of PG 3-3 cross-links and covalent bonds between PG and an Lpp outer membrane (OM) lipoprotein. Vancomycin resistance was induced by an increased amount of decoy d-Ala-d-Ala residues within PG, whereas ß-lactam sensitivity was associated with physical interactions between DacA and PBPs. The presence of an OM permeability barrier strongly strengthened vancomycin resistance, but it significantly weakened ß-lactam sensitivity. Collectively, our results revealed two distinct functions of DacA, which involved inverse modulation of bacterial resistance to clinically important antibiotics, ß-lactams and vancomycin, and presented evidence for a link between DacA and PBPs. IMPORTANCE Bacterial PG hydrolases play important roles in various aspects of bacterial physiology, including cytokinesis, PG synthesis, quality control of PG, PG recycling, and stress adaptation. Of all the PG hydrolases, the role of PG carboxypeptidases is poorly understood, especially regarding their impacts on antibiotic resistance. We have revealed two distinct functions of PG carboxypeptidase DacA with respect to antibiotic resistance. The deletion of DacA led to sensitivity to most ß-lactams, while it caused strong resistance to vancomycin. Our study provides novel insights into the roles of PG carboxypeptidases in the regulation of antibiotic resistance and a potential clue for the development of a drug to improve the clinical efficacy of ß-lactam antibiotics.


Asunto(s)
Peptidoglicano , beta-Lactamas , Alanina/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Carboxipeptidasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Vancomicina/metabolismo , Vancomicina/farmacología , Resistencia a la Vancomicina , beta-Lactamas/metabolismo , beta-Lactamas/farmacología
4.
Biochem Biophys Res Commun ; 501(2): 458-464, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29738773

RESUMEN

PerR is a metal-dependent peroxide sensing transcription factor which controls the expression of genes involved in peroxide resistance. The function of Bacillus subtilis PerR is mainly dictated by the regulatory metal ion (Fe2+ or Mn2+) coordinated by three N-donor ligands (His37, His91, and His93) and two O-donor ligands (Asp85 and Asp104). While H2O2 sensing by PerR is mediated by Fe2+-dependent oxidation of N-donor ligand (either His37 or His91), one of the O-donor ligands (Asp104), but not Asp85, has been proposed as the key residue that regulates the sensitivity of PerR to H2O2. Here we systematically investigated the relative roles of two O-donor ligands of PerR in metal-binding affinity and H2O2 sensitivity in vivo and in vitro. Consistent with the previous report, in vitro the D104E-PerR could not sense low levels of H2O2 in the presence of excess Fe2+ sufficient for the formation of the Fe2+-bound D104E-PerR. However, the expression of PerR-regulated reporter fusion was not repressed by D104E-PerR in the presence of Fe2+, suggesting that Fe2+ is not an effective corepressor for this mutant protein in vivo. Furthermore, in vitro metal titration assays indicate that D104E-PerR has a significantly reduced affinity for Fe2+, but not for Mn2+, when compared to wild type PerR. These data indicate that the type of O-donor ligand (Asp vs. Glu) at position 104 is an important determinant in providing high Fe2+-binding affinity required for the sensing of the physiologically relevant Fe2+-levels, in addition to its role in rendering PerR highly sensitive to physiological levels of H2O2. In comparison, the D85E-PerR did not show a perturbed change in Fe2+-binding affinity, however, it displayed a slightly decreased sensitivity to H2O2 both in vivo and in vitro, suggesting that the type of O-donor ligand (Asp vs. Glu) at position 85 may be important for the fine-tuning of H2O2 sensitivity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Proteínas Represoras/metabolismo , Sustitución de Aminoácidos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Polarización de Fluorescencia , Ligandos , Oxidación-Reducción , Oxígeno/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Biochem Biophys Res Commun ; 502(1): 48-54, 2018 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-29777693

RESUMEN

Molybdenum cofactor (Moco), molybdopterin (MPT) complexed with molybdenum, is an essential cofactor required for the catalytic center of diverse enzymes in all domains of life. Since Moco cannot be taken up as a nutrient unlike many other cofactors, Moco requires de novo biosynthesis. During the synthesis of MPT, the sulfur atom on the C-terminus of MoaD is transferred to cyclic pyranopterin monophosphate (cPMP) which is bound in the substrate pocket of MoaE. MoaD is a ubiquitin-like (Ubl) protein and has a C-terminal di-Gly motif which is a common feature of Ubl proteins. Despite the importance of free C terminal di-Gly motif of MoaD as a sulfur carrier, some bacteria encode a fused MPT synthase in which MoaD- and MoaE-like domains are located on a single peptide. Although it has recently been reported that the fused MPT synthase MoaX from Mycobacterium tuberculosis is posttranslationally cleaved into functional MoaD and MoaE in M. smegmatis, the protease responsible for the cleavage of MoaD-MoaE fusion protein has remained unknown to date. Here we report that the JAMM/MPN+ domain containing metalloprotease DR0402 (JAMMDR) from Deinococcus radiodurans can cleave the MoaD-MoaE fusion protein DR2607, the sole MPT synthase in D. radiodurans, generating the MoaD having a C-terminal di-Gly motif. Furthermore, JAMMDR can also cleave off the MoaD from MoaD-eGFP fusion protein suggesting that JAMMDR recognizes the MoaD region rather than MoaE region in the cleaving process of MoaD-MoaE fusion protein.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/enzimología , Metaloproteasas/metabolismo , Sulfurtransferasas/metabolismo , Secuencia de Aminoácidos , Deinococcus/química , Deinococcus/metabolismo , Metaloproteasas/química , Dominios Proteicos , Proteolisis , Sulfurtransferasas/química
6.
J Microbiol ; 55(6): 457-463, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28434086

RESUMEN

PerR, a member of Fur family protein, is a metal-dependent H2O2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerRBL, PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerRBL. PerRBL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerRBS. However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H2O2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerRBL and PerRBS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.


Asunto(s)
Bacillus licheniformis/crecimiento & desarrollo , Bacillus licheniformis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Hierro/metabolismo , Proteínas Represoras/genética , Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Represoras/metabolismo , Sideróforos/metabolismo
7.
Biochem Biophys Res Commun ; 484(1): 125-131, 2017 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-28104400

RESUMEN

PerR, a member of Fur family of metal-dependent regulators, is a major peroxide sensor in many Gram positive bacteria, and controls the expression of genes involved in peroxide resistance. Bacillus licheniformis, a close relative to the well-studied model organism Bacillus subtilis, contains three PerR-like proteins (PerRBL, PerR2 and PerR3) in addition to Fur and Zur. In the present study, we characterized the role of PerRBL in B. licheniformis. In vitro and in vivo studies indicate that PerRBL, like PerRBS, uses either Fe2+ or Mn2+ as a corepressor and only the Fe2+-bound form of PerRBL senses low levels of H2O2 by iron-mediated histidine oxidation. Interestingly, regardless of the difference in H2O2 sensitivity, if any, between PerRBL and PerRBS, B. licheniformis expressing PerRBL or PerRBS could sense lower levels of H2O2 and was more sensitive to H2O2 than B. subtilis expressing PerRBL or PerRBS. This result suggests that the differences in cellular milieu between B. subtilis and B. licheniformis, rather than the intrinsic differences in PerRBS and PerRBLper se, affect the H2O2 sensing ability of PerR inside the cell and the H2O2 resistance of cell. In contrast, B. licheniformis and B. subtilis expressing Staphylococcus aureus PerR (PerRSA), which is more sensitive to H2O2 than PerRBL and PerRBS, were more resistant to H2O2 than those expressing either PerRBL or PerRBS. This result indicates that the sufficient difference in H2O2 susceptibility of PerR proteins can override the difference in cellular environment and affect the resistance of cell to H2O2.


Asunto(s)
Bacillus licheniformis/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Represoras/metabolismo , Polarización de Fluorescencia , Histidina/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Oxidación-Reducción , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
PLoS One ; 11(5): e0155539, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27176811

RESUMEN

The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur.


Asunto(s)
Bacillus licheniformis/metabolismo , Proteínas Bacterianas/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Peróxido de Hidrógeno/metabolismo , Anotación de Secuencia Molecular , Familia de Multigenes , Oxidación-Reducción , Proteínas Represoras/metabolismo , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA