Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(6): 1590-1595, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306160

RESUMEN

The Bi2O2Se surfaces are well-known to possess 50% Se vacancies, yet they have shown no in-gap states within the indirect bandgap (∼0.8 eV). We have found that the hidden in-gap states arising from the Se vacancies in a 2 × 1 pattern induce a reduced direct bandgap (∼0.5 eV). Such a reduced direct bandgap is responsible for the high electron mobility of Bi2O2Se. Moreover, the Bi oxide overlayers of the Bi thin films, formed through air exposure and annealing, unexpectedly exhibit a large direct bandgap (∼2.1 eV). The simplified fabrication of Bi oxide overlayers provides promise for improving Bi2O2Se electronic devices and enhancing photocatalytic activity.

2.
ACS Nano ; 17(20): 20580-20588, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37801328

RESUMEN

The efficient optical second-harmonic generation (SHG) of two-dimensional (2D) crystals, coupled with their atomic thickness, which circumvents the phase-match problem, has garnered considerable attention. While various 2D heterostructures have shown promising applications in photodetectors, switching electronics, and photovoltaics, the modulation of nonlinear optical properties in such heterosystems remains unexplored. In this study, we investigate exciton-sensitized SHG in heterobilayers of transition metal dichalcogenides (TMDs), where photoexcitation of one donor layer enhances the SHG response of the other as an acceptor. We utilize polarization-resolved interferometry to detect the SHG intensity and phase of each individual layer, revealing the energetic match between the excitonic resonances of donors and the SHG enhancement of acceptors for four TMD combinations. Our results also uncover the dynamic nature of interlayer coupling, as made evident by the dependence of sensitization on interlayer gap spacing and the average power of the fundamental beam. This work provides insights into how the interlayer coupling of two different layers can modify nonlinear optical phenomena in 2D heterostructures.

3.
Sci Adv ; 9(23): eadg6696, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285425

RESUMEN

van der Waals (vdW) epitaxy can be used to grow epilayers with different symmetries on graphene, thereby imparting unprecedented properties in graphene owing to formation of anisotropic superlattices and strong interlayer interactions. Here, we report in-plane anisotropy in graphene by vdW epitaxially grown molybdenum trioxide layers with an elongated superlattice. The grown molybdenum trioxide layers led to high p-doping of the underlying graphene up to p = 1.94 × 1013 cm-2 regardless of the thickness of molybdenum trioxide, maintaining a high carrier mobility of 8155 cm2 V-1 s-1. Molybdenum trioxide-induced compressive strain in graphene increased up to -0.6% with increasing molybdenum trioxide thickness. The asymmetrical band distortion of molybdenum trioxide-deposited graphene at the Fermi level led to in-plane electrical anisotropy with a high conductance ratio of 1.43 owing to the strong interlayer interaction of molybdenum trioxide-graphene. Our study presents a symmetry engineering method to induce anisotropy in symmetric two-dimensional (2D) materials via the formation of asymmetric superlattices with epitaxially grown 2D layers.

4.
Angew Chem Int Ed Engl ; 62(31): e202307816, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335309

RESUMEN

The performance of nanocrystal (NC) catalysts could be maximized by introducing rationally designed heterointerfaces formed by the facet- and spatio-specific modification with other materials of desired size and thickness. However, such heterointerfaces are limited in scope and synthetically challenging. Herein, we applied a wet chemistry method to tunably deposit Pd and Ni on the available surfaces of porous 2D-Pt nanodendrites (NDs). Using 2D silica nanoreactors to house the 2D-PtND, an 0.5-nm-thick epitaxial Pd or Ni layer (e-Pd or e-Ni) was exclusively formed on the flat {110} surface of 2D-Pt, while a non-epitaxial Pd or Ni layer (n-Pd or n-Ni) was typically deposited at the {111/100} edge in absence of nanoreactor. Notably, these differently located Pd/Pt and Ni/Pt heterointerfaces experienced distinct electronic effect to influence unequally in electrocatalytic synergy for hydrogen evolution reaction (HER). For instance, an enhanced H2 generation on the Pt{110} facet with 2D-2D interfaced e-Pd deposition and faster water dissociation on the edge-located n-Ni overpowered their facet-located counterparts in respective HER catalysis. Therefore, a feasible assembling of the valuable heterointerfaces in the optimal 2D n-Ni/e-Pd/Pt catalyst overcame the sluggish alkaline HER kinetics, with a catalytic activity 7.9 times higher than that of commercial Pt/C.

5.
Nat Commun ; 14(1): 2736, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173328

RESUMEN

Understanding the nature of molecular excitons in low-dimensional molecular solids is of paramount importance in fundamental photophysics and various applications such as energy harvesting, switching electronics and display devices. Despite this, the spatial evolution of molecular excitons and their transition dipoles have not been captured in the precision of molecular length scales. Here we show in-plane and out-of-plane excitonic evolution in quasilayered two-dimensional (2D) perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) crystals assembly-grown on hexagonal boron nitride (hBN) crystals. Complete lattice constants with orientations of two herringbone-configured basis molecules are determined with polarization-resolved spectroscopy and electron diffraction methods. In the truly 2D limit of single layers, two Frenkel emissions Davydov-split by Kasha-type intralayer coupling exhibit energy inversion with decreasing temperature, which enhances excitonic coherence. As the thickness increases, the transition dipole moments of newly emerging charge transfer excitons are reoriented because of mixing with the Frenkel states. The current spatial anatomy of 2D molecular excitons will inspire a deeper understanding and groundbreaking applications of low-dimensional molecular systems.

7.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834902

RESUMEN

Because of their bandgap tunability and strong light-matter interactions, two-dimensional (2D) semiconductors are considered promising candidates for next-generation optoelectronic devices. However, their photophysical properties are greatly affected by their surrounding environment because of their 2D nature. In this work, we report that the photoluminescence (PL) of single-layer WS2 is substantially affected by interfacial water that is inevitably present between it and the supporting mica substrates. Using PL spectroscopy and wide-field imaging, we show that the emission signals from A excitons and their negative trions decreased at distinctively different rates with increasing excitation power, which could be attributed to the more efficient annihilation between excitons than between trions. By gas-controlled PL imaging, we also prove that the interfacial water converted the trions into excitons by depleting native negative charges through an oxygen reduction reaction, which rendered the excited WS2 more susceptible to nonradiative decay via exciton-exciton annihilation. Understanding the role of nanoscopic water in complex low-dimensional materials will eventually contribute to devising their novel functions and related devices.


Asunto(s)
Silicatos de Aluminio , Hipoxia , Humanos , Semiconductores , Agua
8.
ACS Nano ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633192

RESUMEN

A highly reproducible route for the epitaxial growth of single-crystalline monolayer MoS2 on a C-plane sapphire substrate was developed using vapor-pressure-controllable inorganic molecular precursors MoOCl4 and H2S. Microscopic, crystallographic, and spectroscopic analyses indicated that the epitaxial MoS2 film possessed outstanding electrical and optical properties, excellent homogeneity, and orientation selectivity. The systematic investigation of the effect of growth temperature on the crystallographic orientations of MoS2 revealed that the surface termination of the sapphire substrate with respect to the growth temperature determines the crystallographic orientation selectivity of MoS2. Our results suggest that controlling the surface to form a half-Al-terminated surface is a prerequisite for the epitaxial growth of MoS2 on a C-plane sapphire substrate. The insights on the growth mechanism, especially the significance of substrate surface termination, obtained through this study will aid in designing efficient epitaxial growth routes for developing single-crystalline monolayer transition metal dichalcogenides.

9.
ACS Nano ; 16(10): 16385-16393, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36129115

RESUMEN

Ultrathin layered crystals of coordinated chromium(III) are promising not only as two-dimensional (2D) magnets but also as 2D near-infrared (NIR) emitters due to long-range spin correlation and efficient transition between high- and low-spin excited states of Cr3+ ions. In this study, we report on the dual-band NIR photoluminescence (PL) of CrPS4 and show that its excitonic emission bifurcates into fluorescence and phosphorescence depending on thickness, temperature, and defect density. In addition to the spectral branching, the biexponential decay of PL transients, also affected by the three factors, could be well described within a three-level kinetic model for Cr(III). In essence, the PL bifurcations are governed by activated reverse intersystem crossing from the low- to high-spin states, and the transition barrier becomes lower for thinner 2D samples because of surface-localized defects. Our findings can be generalized to 2D solids of coordinated metals and will be valuable in realizing groundbreaking magneto-optic functions and devices.

10.
Phys Chem Chem Phys ; 24(28): 16940-16941, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35816035
11.
Nature ; 606(7912): 88-93, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650356

RESUMEN

Large-area single-crystal monolayers of two-dimensional (2D) materials such as graphene1-3, hexagonal boron nitride (hBN)4-6 and transition metal dichalcogenides7,8 have been grown. hBN is considered to be the 'ideal' dielectric for 2D-materials-based field-effect transistors (FETs), offering the potential for extending Moore's law9,10. Although hBN thicker than a monolayer is more desirable as substrate for 2D semiconductors11,12, highly uniform and single-crystal multilayer hBN growth has yet to be demonstrated. Here we report the epitaxial growth of wafer-scale single-crystal trilayer hBN by a chemical vapour deposition (CVD) method. Uniformly aligned hBN islands are found to grow on single-crystal Ni (111) at early stage and finally to coalesce into a single-crystal film. Cross-sectional transmission electron microscopy (TEM) results show that a Ni23B6 interlayer is formed (during cooling) between the single-crystal hBN film and Ni substrate by boron dissolution in Ni. There are epitaxial relationships between hBN and Ni23B6 and between Ni23B6 and Ni. We also find that the hBN film acts as a protective layer that remains intact during catalytic evolution of hydrogen, suggesting continuous single-crystal hBN. This hBN transferred onto the SiO2 (300 nm)/Si wafer acts as a dielectric layer to reduce electron doping from the SiO2 substrate in MoS2 FETs. Our results demonstrate high-quality single-crystal  multilayered hBN over large areas, which should open up new pathways for making it a ubiquitous substrate for 2D semiconductors.

12.
Acc Chem Res ; 55(1): 44-55, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34928130

RESUMEN

Understanding charge transfer (CT) between two chemical entities and the subsequent change in their charge densities is essential not only for molecular species but also for various low-dimensional materials. Because of their extremely high fraction of surface atoms, two-dimensional (2-D) materials are most susceptible to charge exchange and exhibit drastically different physicochemical properties depending on their charge density. In this regard, spontaneous and uncontrollable ionization of graphene in the ambient air has caused much confusion and technical difficulty in achieving experimental reproducibility since its first report in 2004. Moreover, the same ambient hole doping was soon observed in 2-D semiconductors, which implied that a common mechanism should be operative and apply to other low-dimensional materials universally. Notably, a similar CT reaction has long been known for carbon nanotubes but is still controversial in its mechanism.In this Account, we review our breakthroughs in unraveling the chemical origin and mechanistic requirements of the hidden CT reactions using 2-D crystals. As a first step, we have developed in situ optical methods to quantify charge density using Raman and photoluminescence (PL) spectroscopy and imaging. To overcome the multimodal sensitivity of Raman frequencies, we established a novel analytical method based on theory and experiments with excellent resolution for the charge density (∼1 × 1012 cm-2) and lattice strain (∼0.02%) of graphene. For 2-D transition-metal dichalcogenides, PL spectroscopy and imaging provided a high precision and sensitivity that enabled rapid kinetic measurements in a spatially resolved manner.Using gas- and temperature-controlled in situ measurements, we revealed that the electrical holes are injected by the oxygen reduction reaction (ORR) O2 + 4H+ + 4e- ⇄ 2H2O, which was independently verified by the pH dependence in HCl solutions. In addition to oxygen and water vapor, the overall CT reaction requires hydrophilic dielectric substrates, which assist the hydration of the sample-substrate interface. We also found that the CT reaction is substantially enhanced when samples are thermally annealed. The amplification is due to the interfacial hydrophilicity increased by the thermal hydroxylation of substrates, which indicates that the CT reaction is localized at the interface and boosted by interfacial water.The interface-localized CT allowed us to study and control molecular diffusion through the 2-D van der Waals space between samples and substrates. Wide-field PL imaging showed how fast oxygen molecules diffuse through the interfacial space, subsequently inducing the CT reaction. By increasing the 2-D gap spacing, the diffusion kinetics could be accelerated. The rate of CT could also be enhanced by introducing defects on the basal plane of 2-D crystals, which demonstrates the decisive role of defects as CT centers.Because of their unique geometry, low-dimensional materials are highly susceptible to external perturbation including charge exchange. Because the vulnerability can be exploited to modify material properties, the complete mechanism of the fundamental charge exchange summarized in this Account will be essential to exploring material and device properties of other low-dimensional materials.

13.
Sci Rep ; 11(1): 23590, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880289

RESUMEN

Beyond the general purpose of noble gas ion sputtering, which is to achieve functional defect engineering of two-dimensional (2D) materials, we herein report another positive effect of low-energy (100 eV) He+ ion irradiation: converting n-type MoS2 to p-type by electron capture through the migration of the topmost S atoms. The electron capture ability via He+ ion irradiation is valid for supported bilayer MoS2; however, it is limited at supported monolayer MoS2 because the charges on the underlying substrates transfer into the monolayer under the current condition for He+ ion irradiation. Our technique provides a stable and universal method for converting n-type 2D transition metal dichalcogenides (TMDs) into p-type semiconductors in a controlled fashion using low-energy He+ ion irradiation.

14.
ACS Appl Mater Interfaces ; 13(31): 37052-37062, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34319071

RESUMEN

Dimensionality engineering is an effective approach to improve the stability and power conversion efficiency (PCE) of perovskite solar cells (PSCs). A two-dimensional (2D) perovskite assembled from bulky organic cations to cover the surface of three-dimensional (3D) perovskite can repel ambient moisture and suppress ion migration across the perovskite film. This work demonstrates how the thermal stability of the bulky organic cation of a 2D perovskite affects the crystallinity of the perovskite and the optoelectrical properties of perovskite solar cells. Structural analysis of (FAPbI3)0.95(MAPbBr3)0.05 (FA = formamidinium ion, MA = methylammonium ion) mixed with a series of bulky cations shows a clear correlation between the structure of the bulky cations and the formation of surface defects in the resultant perovskite films. An organic cation with primary ammonium structure is vulnerable to a deprotonation reaction under typical perovskite-film processing conditions. Decomposition of the bulky cations results in structural defects such as iodide vacancies and metallic lead clusters at the surface of the perovskite film; these defects lead to a nonradiative recombination loss of charge carriers and to severe ion migration during operation of the device. In contrast, a bulky organic cation with a quaternary ammonium structure exhibits superior thermal stability and results in substantially fewer structural defects at the surface of the perovskite film. As a result, the corresponding PSC exhibits the PCE of 21.6% in a reverse current-voltage scan and a stabilized PCE of 20.1% with an excellent lifetime exceeding 1000 h for the encapsulated device under continuous illumination.

15.
Adv Mater ; 33(38): e2102797, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34331341

RESUMEN

Organometal halide perovskites (OHPs) exhibit superior charge transport characteristics and ultralow thermal conductivities. However, thermoelectric (TE) applications of OHPs have been limited because of difficulties in controlling their carrier concentration, which is a key to optimizing their TE properties. Here, facile control of the carrier concentration in Sn-based OHPs is achieved by developing 2D crystal structures. The 2D OHP crystals are laterally oriented using a mixed solvent, and the morphology and crystal structure of the coexisting 2D/3D hybrid structures are systematically controlled via doping with methylammonium chloride. The effective number neff of inorganic octahedron layers in the 2D OHPs shows a strong positive correlation with the carrier concentration. Moreover, the 2D structure induces the quantum confinement effect, which enhances both the Seebeck coefficient and the electrical conductivity. A 2D OHP shows a high power factor of 111 µW m-1 K-2 , which is an order of magnitude greater than the power factor of its 3D counterpart.

16.
Nano Lett ; 21(15): 6600-6608, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34283620

RESUMEN

Two-dimensional molecular crystals have been beyond the reach of systematic investigation because of the lack or instability of their well-defined forms. Here, we demonstrate drastically enhanced photostability and Davydov splitting in single and few-layer tetracene (Tc) crystals sandwiched between inorganic 2D crystals of graphene or hexagonal BN. Molecular orientation and long-range order mapped with polarized wide-field photoluminescence imaging and optical second-harmonic generation revealed high crystallinity of the 2D Tc and its distinctive orientational registry with the 2D inorganic crystals, which were also verified with first-principles calculations. The reduced dielectric screening in 2D space was manifested by enlarged Davydov splitting and attenuated vibronic sidebands in the excitonic absorption and emission of monolayer Tc crystals. Photostable 2D molecular crystals and their size effects will lead to novel photophysical principles and photonic applications.

17.
ACS Appl Mater Interfaces ; 13(24): 28593-28599, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34101416

RESUMEN

Quasi-one-dimensional (1D) graphene nanoribbons (GNRs) have finite band gaps and active edge states and therefore can be useful for advanced chemical and electronic devices. Here, we present the formation of GNR grids via seed-assisted chemical vapor deposition on Ge(100) substrates. Nucleation seeds, provided by unzipped C60, initiated growth of the GNRs. The GNRs grew toward two orthogonal directions in an anisotropic manner, templated by the single crystalline substrate, thereby forming grids that had lateral stitching over centimeter scales. The spatially uniform grid can be transferred and patterned for batch fabrication of devices. The GNR grids showed percolative conduction with a high electrical sheet conductance of ∼2 µS·sq and field-effect mobility of ∼5 cm2/(V·s) in the macroscopic channels, which confirm excellent lateral stitching between domains. From transconductance measurements, the intrinsic band gap of GNRs with sub-10 nm widths was estimated as ∼80 meV, similar to theoretical expectation. Our method presents a scalable way to fabricate atomically thin elements with 1D characteristics for integration with various nanodevices.

19.
Nano Lett ; 20(12): 8825-8831, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33205983

RESUMEN

Second-harmonic generation (SHG) is a nonlinear optical process that converts two identical photons into a new one with doubled frequency. Two-dimensional semiconductors represented by transition-metal dichalcogenides are highly efficient SHG media because of their excitonic resonances. Using spectral phase interferometry, here we directly show that SHG in heterobilayers of MoS2 and WS2 is governed by optical interference between two coherent SH fields that are phase-delayed differently in each material. We also quantified the frequency-dependent phase difference between the two, which agreed with polarization-resolved data and first-principles calculations on complex susceptibility. The second-harmonic analogue of Young's double-slit interference shown in this work demonstrates the potential of custom-designed parametric generation by atom-thick nonlinear optical materials.

20.
ACS Nano ; 14(8): 10578-10588, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32806078

RESUMEN

Next-generation electrocatalysts with smart integrated designs, maximizing the chemical cascade synergy for sustainable hydrogen production, are needed to address the urgent environmental threats, but scalable synthesis of precisely architectured nanohybrids rendering a few-nanometer interfacial controllability to augment the catalytic reactivity and operational stability is a major bottleneck. Herein, by inventing a surface-confined lateral growth of nanometer-thin and nanoporous two-dimensional (2D)-Pt on NiFe-LDH nanosheets, a highly reactive 2D-2D interfacially integrated nanoplatform is synthesized for an alkaline hydrogen evolution reaction (HER) which not only extracts high Pt-atomic utilization efficiency but also synergistically accelerates the water dissociation and hydrogen generation cascade on the colocalized Pt/M(OH)x active sites, endowing a 6.1-fold higher Pt mass activity than 20% Pt/C and also empowers a record-high HER operational stability for 50 h, due to the chemically enforced lamellar architecture. This work offers a gateway to produce active metal nanosheets tailored with a suitable active-template surface in order to invent and enforce futuristic catalysis technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...