Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 21(5): 055003, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21817290

RESUMEN

Two-component multilayer thin films frequently show hardness enhancements at specific repeat periods above that of the constituent layers. This study of hardness enhancements in W/Al nanostructured coatings provides strong new evidence that hardness enhancements in this system arise not only from the presence of a layered structure, but also from the presence of defects introduced by changing the deposition conditions. Samples with well defined layers of W and Al were produced by sputtering to cover a wide range of periods from 10 to 200 nm. No evidence of enhanced hardness in these films was found by nanoindentation. On the other hand, samples deposited from cathodic arc sources showed strong hardness enhancement above that of pure W. However, the samples of highest hardness did not contain Al layers for much of their thickness. The hardening mechanism therefore could not be attributed to the presence of a multilayer structure. Examination of the microstructure showed that the interruptions to the W deposition caused by operation of the Al source introduced defects which acted as pinning sites for dislocations. The nanoindentation hardness data were well described using a modified Hall-Petch relation.

2.
Opt Express ; 16(4): 2302-14, 2008 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-18542309

RESUMEN

The dielectric functions of plasma deposited silver on SiO2 through all stages of Volmer-Weber growth at room temperature and 150 degrees C were determined unambiguously by applying a model-independent inversion method to dynamic in situ spectroscopic ellipsometric data. The results show large differences in the localized plasmon resonance and the percolation threshold at the two temperatures. Using these model-independent dielectric functions we assess the effectiveness of modelling the plasmon resonance by fitting a Lorentz oscillator. The methods show agreement for the position of the plasmon resonance below the percolation threshold and for the effective film thickness up to 5.6 nm at room temperature and 11.5 nm at 150 degrees C, however the line shape of the resonance is described by the Lorentzian only in the early stages of film growth.

3.
Opt Express ; 15(24): 15987-98, 2007 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19550885

RESUMEN

Dynamic in situ spectroscopic ellipsometry is used to probe post-deposition nano-structural changes in silver films at room temperature in the pre- and post-coalescence stages of Volmer-Weber growth. In the island growth phase the Maxwell-Garnett theory is used to determine structural changes in the island film. Changes in the plasmon resonance frequency indicate an increased distance between islands which explain pre-coalescence resistivity changes. Post-coalescence changes in the resistivity are determined to be due to grain growth. A reduction in film thickness of 0.2 - 0.3 nm is also observed. The results are used to evaluate recent competing theories based on in situ stress measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...