Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Head Neck ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747190

RESUMEN

BACKGROUND: Tubarial glands are a new organ at risk for head and neck cancer radiation therapy (RT). We aimed to study the feasibility of sparing them using intensity-modulated radiation therapy (IMRT). METHODS: Tubarial glands were delineated for 17 patients with oropharyngeal carcinoma receiving definitive RT, and treatment plans were re-optimized to spare dose to the tubarial glands while maintaining target coverage. A paired t test was performed to compare the mean dose of tubarial glands and target coverage. RESULTS: The difference in mean doses was 4.9 and 7.0 Gy for the ipsilateral and contralateral tubarial glands, respectively (p < 0.01). The mean dose to tubarial gland was ≤39 Gy in 35% versus 47% (ipsilateral) and 70% versus 100% (contralateral) in clinical and re-optimized plans, respectively. Re-optimized ipsilateral tubarial gland mean ≤39 Gy was achieved more commonly in patients with base of tongue versus tonsil primaries (86% vs. 20%, p = 0.02). CONCLUSION: This pilot study demonstrates the dosimetric feasibility of tubarial gland sparing with IMRT. Dosimetric constraints need to be determined with larger studies.

2.
Med Dosim ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431501

RESUMEN

Single-fraction stereotactic radiosurgery (SRS) or fractionated SRS (FSRS) are well established strategies for patients with limited brain metastases. A broad spectrum of modern dedicated platforms are currently available for delivering intracranial SRS/FSRS; however, SRS/FSRS delivered using traditional CT-based platforms relies on the need for diagnostic MR images to be coregistered to planning CT scans for target volume delineation. Additionally, the on-board image guidance on traditional platforms yields limited inter-fraction and intra-fraction real-time visualization of the tumor at the time of treatment delivery. MR Linacs are capable of obtaining treatment planning MR and on-table MR sequences to enable visualization of the targets and organs-at-risk and may subsequently help identify anatomical changes prior to treatment that may invoke the need for on table treatment adaptation. Recently, an MR-guided intracranial package (MRIdian A3i BrainTxTM) was released for intracranial treatment with the ability to perform high-resolution MR sequences using a dedicated brain coil and cranial immobilization system. The objective of this report is to provide, through the experience of our first patient treated, a comprehensive overview of the clinical application of our institutional program for FSRS adaptive delivery using MRIdian's A3i BrainTx system-highlights include reviewing the imaging sequence selection, workflow demonstration, and details in its delivery feasibility in clinical practice, and dosimetric outcomes.

3.
Tomography ; 10(1): 169-180, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38250959

RESUMEN

Radiotherapy for ultracentral lung tumors represents a treatment challenge, considering the high rates of high-grade treatment-related toxicities with stereotactic body radiation therapy (SBRT) or hypofractionated schedules. Accelerated hypofractionated magnetic resonance-guided adaptive radiation therapy (MRgART) emerged as a potential game-changer for tumors in these challenging locations, in close proximity to central organs at risk, such as the trachea, proximal bronchial tree, and esophagus. In this series, 13 consecutive patients, predominantly male (n = 9), with a median age of 71 (range (R): 46-85), underwent 195 MRgART fractions (all 60 Gy in 15 fractions) to metastatic (n = 12) or primary ultra-central lung tumors (n = 1). The median gross tumor volumes (GTVs) and planning target volumes (PTVs) were 20.72 cc (R: 0.54-121.65 cc) and 61.53 cc (R: 3.87-211.81 cc), respectively. The median beam-on time per fraction was 14 min. Adapted treatment plans were generated for all fractions, and indications included GTV/PTV undercoverage, OARs exceeding tolerance doses, or both indications in 46%, 18%, and 36% of fractions, respectively. Eight patients received concurrent systemic therapies, including immunotherapy (four), chemotherapy (two), and targeted therapy (two). The crude in-field loco-regional control rate was 92.3%. No CTCAE grade 3+ toxicities were observed. Our results offer promising insights, suggesting that MRgART has the potential to mitigate toxicities, enhance treatment precision, and improve overall patient care in the context of ultracentral lung tumors.


Asunto(s)
Neoplasias Pulmonares , Planificación de la Radioterapia Asistida por Computador , Humanos , Imagen por Resonancia Magnética , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Espectroscopía de Resonancia Magnética
4.
Med Dosim ; 48(3): 127-133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36966049

RESUMEN

For patients with newly diagnosed glioblastoma, the current standard-of-care includes maximal safe resection, followed by concurrent chemoradiotherapy and adjuvant temozolomide, with tumor treating fields. Traditionally, diagnostic imaging is performed pre- and post-resection, without additional dedicated longitudinal imaging to evaluate tumor volumes or other treatment-related changes. However, the recent introduction of MR-guided radiotherapy using the ViewRay MRIdian A3i system includes a dedicated BrainTx package to facilitate the treatment of intracranial tumors and provides daily MR images. We present the first reported case of a glioblastoma imaged and treated using this workflow. In this case, a 67-year-old woman underwent adjuvant chemoradiotherapy after gross total resection of a left frontal glioblastoma. The radiotherapy treatment plan consisted of a traditional two-phase design (46 Gy followed by a sequential boost to a total dose of 60 Gy at 2 Gy/fraction). The treatment planning process, institutional workflow, treatment imaging, treatment timelines, and target volume changes visualized during treatment are presented. This case example using our institutional A3i system workflow successfully allows for imaging and treatment of primary brain tumors and has the potential for margin reduction, detection of early disease progression, or to detect the need for dose adaptation due to interfraction tumor volume changes.

5.
Head Neck ; 44(5): 1213-1222, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35243719

RESUMEN

BACKGROUND: Submandibular gland (SMG) transfer decreased radiation-associated xerostomia in the 2/3-dimensional radiotherapy era. We evaluated the dosimetric implications of SMG transfer on modern intensity modulated radiotherapy (IMRT) plans. METHODS: Eighteen oropharynx cancer patients underwent SMG transfer followed by IMRT; reoptimized plans using the baseline SMG location were generated. Mean salivary gland, oral cavity, and larynx doses were compared between clinical plans and reoptimized plans. RESULTS: No statistically significant difference in mean SMG dose (27.53 Gy vs. 29.61 Gy) or total salivary gland dose (26.12 Gy vs. 26.41 Gy) was observed with or without SMG transfer (all p > 0.05). Mean oral cavity and larynx doses were not statistically different. Neither tumor site, target volume crossing midline, stage, nor salivary gland volumes were associated with mean doses. CONCLUSIONS: Salivary gland doses were similar with or without SMG transfer. IMRT likely decreases the benefit of SMG transfer on the risk of radiation-associated xerostomia.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Radioterapia de Intensidad Modulada , Xerostomía , Humanos , Neoplasias Orofaríngeas/radioterapia , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Glándula Submandibular , Xerostomía/etiología , Xerostomía/prevención & control
6.
Front Oncol ; 12: 1037674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713501

RESUMEN

Purpose/Objectives: Magnetic resonance-guided radiotherapy (MRgRT) is increasingly used in a variety of adult cancers. To date, published experience regarding the use of MRgRT in pediatric patients is limited to two case reports. We report on the use of MRgRT for pediatric patients at our institution during a four-year period and describe important considerations in the selection and application of this technology in children. Materials/Methods: All patients treated with MRgRT since inception at our institution between 4/2018 and 4/2022 were retrospectively reviewed. We also evaluated all pediatric patients treated at our institution during the same period who received either imaging or treatment using our magnetic resonance-guided linear accelerator (MR Linac). We summarize four clinical cases where MRgRT was selected for treatment in our clinic, including disease outcomes and toxicities and describe our experience using the MR Linac for imaging before and during treatment for image fusion and tumor assessments. Results: Between 4/2018 and 4/2022, 535 patients received MRgRT at our center, including 405 (75.7%) with stereotactic ablative radiotherapy (SABR). During this period, 347 distinct radiotherapy courses were delivered to pediatric patients, including 217 (62.5%) with proton therapy. Four pediatric patients received MRgRT. One received SABR for lung metastasis with daily adaptive replanning and a second was treated for liver metastasis using a non-adaptive workflow. Two patients received fractionated MRgRT for an ALK-rearranged non-small cell lung cancer and neuroblastoma. No Grade 2 or higher toxicities were observed or reported during MRgRT or subsequent follow-up. Twelve patients underwent MR imaging without contrast during treatment for brain tumors to assess for tumor/cystic changes. Two patients treated with other modalities underwent MR simulation for target volume delineation and organ at risk sparing due to anatomic changes during treatment or unexpected delays in obtaining diagnostic MR appointments. Conclusions: In four pediatric patients treated with MRgRT, treatment was well tolerated with no severe acute effects. At our center, most pediatric patients are treated with proton therapy, but the cases selected for MRgRT demonstrated significant organ at risk sparing compared to alternative modalities. In particular, MRgRT may provide advantages for thoracic/abdominal/pelvic targets using gated delivery and adaptive replanning, but selected patients treated with fractionated radiotherapy may also benefit MRgRT through superior organ at risk sparing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...