Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 322(1): 65-72, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18384803

RESUMEN

This work presents experimental results on simple shear and porous media flow of aqueous solutions of two hydroxyethyl celluloses (HEC) and two hydrophobically modified hydroxyethyl celluloses (HMHEC) with different molecular weights. Mixtures of these polymers with a cationic surfactant, cetyltrimethylammonium p-toluenesulfonate (CTAT) were also studied. Emphasis was given to the range of surfactant concentrations in which wormlike micelles are formed. The presence of hydrophobic groups, the effect of the molecular weight of the polymers, the surfactant and polymer concentrations, and the effect of the flow field type (simple shear versus porous media flow) were the most important variables studied. The results show that the shear viscosity of HEC/CTAT solutions is higher than the viscosities of surfactant and polymer solutions at the same concentrations, but surface tension measurements indicate that no complex formation occurs between CTAT and HEC. On the other hand, a complex driven by hydrophobic interactions was detected by surface tension measurements between CTAT and HMHEC. In this case, the viscosity of the mixture increases significantly more (up to four orders of magnitude at high CTAT concentrations) in comparison with HEC/CTAT aqueous solutions. Increments in the molecular weight of the polymers increase the interaction with CTAT and the shear viscosity of the solution, but make phase separation more feasible. In porous media flow, the polymer/CTAT mixtures exhibited higher apparent viscosities than in simple shear flows. This result suggests that the extensional component of the flow field in porous media flows leads to a stronger interaction between the polymer and the wormlike micelles, probably as a consequence of change of conformation and growth of the micelles.

2.
J Hazard Mater ; 152(3): 1115-21, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17825487

RESUMEN

This research investigates the use of polymeric matrices to encapsulate solid sorbents used to remove arsenic from drinking water. Arsenic-containing granular ferric oxy/hydroxide and ferric hydroxide amended alumina residuals were encapsulated in a polymeric matrix using a novel aqueous-based manufacturing process. The polymer was a blend of poly(styrene butadiene) and an epoxy resin. The polymeric waste forms produced were capable of containing more than 60 wt% of sorbent (dry basis), while keeping good mechanical properties. Arsenic leaching from encapsulated and unencapsulated residuals was evaluated using the standard toxicity characteristic leaching procedure (TCLP) and the California Waste Extraction Test (CA-WET). The results show that waste forms of the polymer-encapsulated residuals crushed for testing retain good leaching resistance when evaluated with the more aggressive CA-WET test, yielding leachate arsenic concentrations below the toxicity characteristic (TC) standard of 5mg/L. When residuals were preprocessed and encapsulated in a polymer form that avoided the size reduction required by leaching protocols, arsenic leached up to 700 times less than that from the unencapsulated residuals. Comparison of the waste form developed here with conventional cement matrices containing the same residuals show that the polymeric matrices were capable of encapsulating appreciably more material and leached arsenic at concentration levels that were more than an order of magnitude lower than cement.


Asunto(s)
Arsénico/química , Polímeros/química , Microscopía Electrónica de Rastreo
3.
Langmuir ; 20(10): 3838-41, 2004 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-15969367

RESUMEN

It is well-known that solutions of cetyltrimethylammonium p-toluenesulfonate in water exhibit a pronounced shear-thickening phenomenon in a specific concentration range (0.1-0.8%) when they are subjected to simple-shear flows, as a consequence of flow-induced self-assembly of wormlike micelles. This work shows that a strong elongational flow field (opposed-jets flow), applied to the same solutions, does not lead to extension thickening because the extensional flow prevents or destroys micellar association. In flow through a porous medium, a substantial increase in apparent viscosity is observed beyond a critical apparent shear rate, which surpasses increases observed in simple-shear flows. This is explained as the result of a synergistic effect of shear and relatively weak elongation on the solution microstructure.

4.
J Colloid Interface Sci ; 251(2): 388-97, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16290745

RESUMEN

In this work, the elongational flow behavior of aqueous solutions of poly(ethylene oxide) (PEO) was studied in the presence of sulfonated surfactants. The technique of opposed-jets flow was used to generate an elongational flow field in which pressure drops were measured as a function of strain rates. The surfactants used were sodium dodecyl benzene sulfonate (SDBS) and an alpha-olefin sulfonate (AOS). Solutions of PEO and other flexible polymers exhibit extension thickening in opposed-jets flow due to the formation of transient networks of entangled molecules. This effect is present at concentrations below the static coil overlap concentration, due to the changes in molecular conformation induced by the flow. When SDBS or AOS are added to PEO solutions at low concentrations, the extension thickening weakens due to an increase in PEO intramolecular interactions that lead to coil contraction. This occurs until the surfactant concentration is close to the critical aggregation concentration reported in the literature. Further addition of surfactant induces the formation of intermolecular interactions as the PEO molecules are expanded by the electrostatic repulsion between attached micellar aggregates, with an associated strengthening of extension thickening. Intramolecular effects were not seen beyond a specific PEO concentration.

5.
J Colloid Interface Sci ; 236(2): 343-353, 2001 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-11401382

RESUMEN

This work investigates the elongational flow of aqueous solutions of mixtures of a high-molecular-weight poly(ethylene oxide) (PEO) and sodium dodecyl sulfate (SDS). The formation of micellar aggregates of SDS along the PEO chain results in an increase in the strength of the extension thickening of the PEO solutions. This is especially pronounced under conditions in which the PEO molecules form transient entanglements in the flow field. The minimum PEO concentration required to form intermolecular entanglements is substantially reduced in the presence of micellar aggregates. This effect becomes quantitatively less important in solutions with NaCl, which suggests PEO coil contraction due to electrostatic screening of micellar aggregates. However, once extension thickening starts in the presence of NaCl, the growth of pressure drop is more abrupt than without salt, which suggests stronger interactions between PEO coils with attached aggregates. The critical aggregation concentrations of PEO/SDS and PEO/SDS/NaCl solutions agree with those reported in the literature, which were obtained by means of different experimental techniques. However, the saturation of the surfactant effect is attained at lower surfactant concentrations than the polymer saturation point previously reported. This might reflect a low sensitivity of the extension thickening effect to the amount of surfactant bound to the polymerchain as the saturation point is approached. Copyright 2001 Academic Press.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...