Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biotechnol ; 214: 171-81, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26432339

RESUMEN

Pseudomonas pseudoalcaligenes CECT5344 is an alkaliphilic bacterium that can use cyanide as nitrogen source for growth, becoming a suitable candidate to be applied in biological treatment of cyanide-containing wastewaters. The assessment of the whole genome sequence of the strain CECT5344 has allowed the generation of DNA microarrays to analyze the response to different nitrogen sources. The mRNA of P. pseudoalcaligenes CECT5344 cells grown under nitrogen limiting conditions showed considerable changes when compared against the transcripts from cells grown with ammonium; up-regulated genes were, among others, the glnK gene encoding the nitrogen regulatory protein PII, the two-component ntrBC system involved in global nitrogen regulation, and the ammonium transporter-encoding amtB gene. The protein coding transcripts of P. pseudoalcaligenes CECT5344 cells grown with sodium cyanide or an industrial jewelry wastewater that contains high concentration of cyanide and metals like iron, copper and zinc, were also compared against the transcripts of cells grown with ammonium as nitrogen source. This analysis revealed the induction by cyanide and the cyanide-rich wastewater of four nitrilase-encoding genes, including the nitC gene that is essential for cyanide assimilation, the cyanase cynS gene involved in cyanate assimilation, the cioAB genes required for the cyanide-insensitive respiration, and the ahpC gene coding for an alkyl-hydroperoxide reductase that could be related with iron homeostasis and oxidative stress. The nitC and cynS genes were also induced in cells grown under nitrogen starvation conditions. In cells grown with the jewelry wastewater, a malate quinone:oxidoreductase mqoB gene and several genes coding for metal extrusion systems were specifically induced.


Asunto(s)
Cianuros/toxicidad , ADN Bacteriano/análisis , Joyas , Nitrógeno/metabolismo , Pseudomonas pseudoalcaligenes , Aguas Residuales/toxicidad , ADN Bacteriano/genética , Residuos Industriales , Análisis de Secuencia por Matrices de Oligonucleótidos , Pseudomonas pseudoalcaligenes/efectos de los fármacos , Pseudomonas pseudoalcaligenes/genética , Pseudomonas pseudoalcaligenes/fisiología , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua
2.
J Hazard Mater ; 179(1-3): 72-8, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20346583

RESUMEN

Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN(-) L(-1) O.D.(-1) h(-1); however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN(-) L(-1) O.D.(-1) h(-1) to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Cianuros/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Álcalis , Cianuros/química , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Cinética , Oxígeno/química , Pseudomonas pseudoalcaligenes/crecimiento & desarrollo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
3.
J Bacteriol ; 183(5): 1780-3, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11160111

RESUMEN

The phototrophic bacterium Rhodobacter capsulatus is able to reduce 2,4-dinitrophenol (DNP) to 2-amino-4-nitrophenol enzymatically and thus can grow in the presence of this uncoupler. DNP reduction was switched off by glutamine or ammonium, but this short-term regulation did not take place in a draTG deletion mutant. Nevertheless, the target of DraTG does not seem to be the nitrophenol reductase itself since the ammonium shock did not inactivate the enzyme. In addition to this short-term regulation, ammonium or glutamine repressed the DNP reduction system. Mutants of R. capsulatus affected in ntrC or rpoN exhibited a 10-fold decrease in nitroreductase activity in vitro but almost no DNP activity in vivo. In addition, mutants affected in rnfA or rnfC, which are also under NtrC control and encode components involved in electron transfer to nitrogenase, were unable to metabolize DNP. These results indicate that NtrC regulates dinitrophenol reduction in R. capsulatus, either directly or indirectly, by controlling expression of the Rnf proteins. Therefore, the Rnf complex seems to supply electrons for both nitrogen fixation and DNP reduction.


Asunto(s)
2,4-Dinitrofenol/metabolismo , Proteínas Bacterianas/genética , Proteínas Hierro-Azufre/genética , Rhodobacter capsulatus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Proteínas Hierro-Azufre/metabolismo , Fijación del Nitrógeno/genética , Oxidación-Reducción , Compuestos de Amonio Cuaternario/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/crecimiento & desarrollo
4.
Curr Microbiol ; 38(1): 51-6, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9841783

RESUMEN

The phototrophic bacterium Rhodobacter capsulatus utilizes the aromatic amino acids L-phenylalanine and L-tyrosine as nitrogen source. L-Phenylalanine is hydroxylated to L-tyrosine, which is further converted into p-hydroxyphenyl pyruvate (pHPP) by a transamination reaction. The bacterium is unable to grow at the expense of these amino acids as the sole carbon source, although it is able to degrade them to homogentisate, probably by unspecific hydroxylation reactions. Metabolization of L-phenylalanine or L-tyrosine as nitrogen source requires phototrophic growth conditions and does not produce free ammonium inside the cells. A low aminotransferase activity with 2-oxoglutarate and L-tyrosine as substrates can be detected in crude extracts of R. capsulatus. Uptake of both amino acids by R. capsulatus was completely inhibited by ammonium addition, which also prevents aminotransferase induction.


Asunto(s)
Fenilalanina/metabolismo , Rhodobacter capsulatus/metabolismo , Tirosina/metabolismo , Cromatografía Líquida de Alta Presión , Pruebas Enzimáticas Clínicas , Ácidos Cetoglutáricos/metabolismo , Rhodobacter capsulatus/enzimología , Transaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...