Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 12(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36009616

RESUMEN

The reuse of effluents from intensive dairy farms combined with localized irrigation techniques (fertigation) has become a promising alternative to increase crop productivity while reducing the environmental impact of waste accumulation and industrial fertilizers production. Currently, the reuse of dairy effluents through fertigation by subsurface drip irrigation (SDI) systems is of vital importance for arid regions but it has been poorly studied. The present study aimed to assess the greenhouse gas (GHG) emissions, soil properties, and crop yield of a maize crop fertigated with either treated dairy effluent or dissolved granulated urea applied through an SDI system at a normalized N application rate of 200 kg N ha-1. Fertilizer application was divided into six fertigation events. GHG fluxes were measured during fertigation (62-day) using static chambers. Soil properties were measured previous to fertilizer applications and at the harvest coinciding with crop yield estimation. A slight increase in soil organic matter was observed in both treatments for the 20-60 cm soil depth. Both treatments also showed similar maize yields, but the dairy effluent increased net GHG emissions more than urea during the fertigation period. Nevertheless, the net GHG emissions from the dairy effluent were lower than the theoretical CO2eq emission that would have been emitted during urea manufacturing or the longer storage of the effluent if it had not been used, showing the need for life-cycle assessments. Local-specific emission factors for N2O were determined (0.07%), which were substantially lower than the default value (0.5%) of IPCC 2019. Thus, the subsurface drip irrigation systems can lead to low GHG emissions, although further studies are needed.

2.
Environ Res ; 213: 113583, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35691386

RESUMEN

The global consumption of plastic is growing year by year, producing small plastic pieces known as microplastics (MPs) that adversely affect ecosystems. The use of organic amendments (compost and manure) polluted with MPs affects the quality of agricultural soils, and these MPs can be incorporated into the food chain and negatively impact human health. Current European legislation only considers large plastic particles in organic amendments. There is no information regarding MP pollution. Thus, the development of a methodology to support future legislation ensuring the quality of agricultural soils and food safety is necessary. This proposed methodology is based on thermogravimetry coupled with mass spectrometry to quantify polyethylene and polystyrene (PE and PS) MPs through their mass spectrometry signal intensity of characteristic PE (m/z 41, 43 and 56) and PS (m/z 78 and 104) ions. This method has been validated with several organic amendments where the MP content ranged from 52.6 to 4365.7 mg kg-1 for PE-MPs and from 1.1 to 64.3 mg kg-1 for PS-MPs. The proposed methodology is a quick and robust analytical method to quantify MPs in organic amendments that could support new legislation.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Humanos , Espectrometría de Masas , Plásticos , Polietileno , Poliestirenos , Suelo , Termogravimetría , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...