Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1191966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655253

RESUMEN

NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.


Asunto(s)
Péptidos Antimicrobianos , Proteínas de Peces , Proteolípidos , Salmo salar , Animales , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Proteínas de Peces/farmacología , Inmunidad Innata , Proteolípidos/metabolismo , Proteolípidos/farmacología , Salmo salar/inmunología , Transducción de Señal
2.
Fish Shellfish Immunol ; 146: 109373, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272332

RESUMEN

Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.


Asunto(s)
Proteína HMGB1 , Salmo salar , Animales , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/farmacología , Flagelina/farmacología
3.
Vet Res ; 54(1): 115, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041163

RESUMEN

Classical swine fever virus (CSFV) is an ancient pathogen that continues to pose a threat to animal agriculture worldwide. The virus belongs to the genus Pestivirus and the family Flaviviridae. It causes a multisystemic disease that affects only pigs and is responsible for significant economic losses. CSFV infection is probably a multistep process that involves the proteins in the virus envelope and more than one receptor in the membrane of permissive cells. To date, the cellular receptors essential for CSFV entry and their detailed functions during this process remains unknown. All the viral envelope proteins Erns, E1 and E2 are involved in the entry process to some extent and the experimental approaches conducted until now have helped to unveil their contributions. This review aims to provide an overview of current knowledge on cellular molecules described to be involved in CSFV entry, including complement regulatory protein 46 (CD46), heparan sulphate (HS), Laminin receptor, Integrin ß3, Annexin II, MERKT and ADAM17. This knowledge would not only help to understand the molecular mechanisms involved in pestivirus infection, but also provide a rational basis for the development of nonvaccinal alternatives for CSFV control.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Enfermedades de los Porcinos , Animales , Porcinos , Virus de la Fiebre Porcina Clásica/fisiología , Línea Celular , Proteínas del Envoltorio Viral , Receptores de Superficie Celular/metabolismo
4.
Vaccines (Basel) ; 11(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38140192

RESUMEN

Pig is one of the most consumed meats worldwide. One of the main conditions for pig production is Porcine Enteropathy caused by Lawsonia intracellularis. Among the effects of this disease is chronic mild diarrhea, which affects the weight gain of pigs, generating economic losses. Vaccines available to prevent this condition do not have the desired effect, but this limitation can be overcome using adjuvants. Pro-inflammatory cytokines, such as interleukin 18 (IL-18), can improve an immune response, reducing the immune window of protection. In this study, recombinant porcine IL-18 was produced and expressed in Escherichia coli and Pichia pastoris. The protein's biological activity was assessed in vitro and in vivo, and we determined that the P. pastoris protein had better immunostimulatory activity. A vaccine candidate against L. intracellularis, formulated with and without IL-18, was used to determine the pigs' cellular and humoral immune responses. Animals injected with the candidate vaccine co-formulated with IL-18 showed a significant increase of Th1 immune response markers and an earlier increase of antibodies than those vaccinated without the cytokine. This suggests that IL-18 acts as an immunostimulant and vaccine adjuvant to boost the immune response against the antigens, reducing the therapeutic window of recombinant protein-based vaccines.

5.
Vaccines (Basel) ; 11(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38140221

RESUMEN

Previously, we designed a subunit vaccine candidate based on three L. intracellularis antigens with promising results in pigs. In this study, antigens were produced individually to achieve an even antigen ratio in the formulation. The emulsion characterization included the drop size and the mechanical and thermal stability. Immune response was evaluated by indirect and sandwich ELISAs, qPCR, and flow cytometry. The vaccine candidate's safety was assessed by histopathology and monitoring the clinical behavior of animals. The average production yielded for the chimeric antigen as inclusion bodies was around 75 mg/L. The formulation showed mechanical and thermal stability, with a ratio Hu/Ho > 0.85 and a drop size under 0.15 nm. Antigens formulated at a ratio of 1:1:1 induced a significant immune response in inoculated pigs that persisted until the end of the experiment (week 14). The dose of 200 µg significantly activated cellular response measured by transcriptional and translational levels of cytokines. The cell proliferation assay revealed an increment of lymphocytes T CD4+ at the same dose. Animals gained weight constantly and showed proper clinical behavior during immunization assays. This research demonstrated the immunological robustness of the new subunit vaccine candidate against Porcine Proliferative Enteropathy evenly formulated with three chimeric antigens of L. intracellularis.

6.
Heliyon ; 9(12): e23215, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38149209

RESUMEN

Neuropeptides are a group of peptides derived from precursor proteins synthesized in neuronal and nonneuronal cells. The classical functions of neuropeptides have been extensively studied in mammals, including neuromodulation in the central nervous system, molecular signaling in the peripheral nervous system, and immunomodulation associated mainly with anti-inflammatory activity. In contrast, in teleosts, studies of the immunomodulatory function of these neuropeptides are limited. In Oncorhynchus mykiss, vasoactive intestinal peptide (VIP) mRNA sequences have not been cloned, and the role of VIP in modulating the immune system has not been studied. Furthermore, in relation to other neuropeptides with possible immunomodulatory function, such as ghrelin, there are also few studies. Therefore, in this work, we performed molecular cloning, identification, and phylogenetic analysis of three VIP precursor sequences (prepro-VIP1, VIP2 and VIP3) in rainbow trout. In addition, the immunomodulatory function of both neuropeptides was evaluated in an in vitro model using the VIP1 sequence identified in this work and a ghrelin sequence already studied in O. mykiss. The results suggest that the prepro-VIP2 sequence has the lowest percentage of identity with respect to the other homologous sequences and is more closely related to mammalian orthologous sequences. VIP1 induces significant expression of both pro-inflammatory (IFN-γ, IL-1ß) and anti-inflammatory (IL-10 and TGF-ß) cytokines, whereas ghrelin only induces significant expression of proinflammatory cytokines such as IL-6 and TNF-α.

7.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834146

RESUMEN

The aquaculture industry is constantly increasing its fish production to provide enough products to maintain fish consumption worldwide. However, the increased production generates susceptibility to infectious diseases that cause losses of millions of dollars to the industry. Conventional treatments are based on antibiotics and antivirals to reduce the incidence of pathogens, but they have disadvantages, such as antibiotic resistance generation, antibiotic residues in fish, and environmental damage. Instead, functional foods with active compounds, especially antimicrobial peptides that allow the generation of prophylaxis against infections, provide an interesting alternative, but protection against gastric degradation is challenging. In this study, we evaluated a new immunomodulatory recombinant peptide, CATH-FLA, which is encapsulated in chitosan microparticles to avoid gastric degradation. The microparticles were prepared using a spray drying method. The peptide release from the microparticles was evaluated at gastric and intestinal pH, both in vitro and in vivo. Finally, the biological activity of the formulation was evaluated by measuring the expression of il-1ß, il-8, ifn-γ, Ifn-α, and mx1 in the head kidney and intestinal tissues of rainbow trout (Oncorhynchus mykiss). The results showed that the chitosan microparticles protect the CATH-FLA recombinant peptide from gastric degradation, allowing its release in the intestinal portion of rainbow trout. The microparticle-protected CATH-FLA recombinant peptide increased the expression of il-1ß, il-8, ifn-γ, ifn-α, and mx1 in the head kidney and intestine and improved the antiprotease activity in rainbow trout. These results suggest that the chitosan microparticle/CATH-FLA recombinant peptide could be a potential prophylactic alternative to conventional antibiotics for the treatment of infectious diseases in aquaculture.


Asunto(s)
Quitosano , Enfermedades Transmisibles , Enfermedades de los Peces , Oncorhynchus mykiss , Animales , Quitosano/farmacología , Interleucina-8 , Inmunidad Innata , Péptidos/farmacología , Intestinos , Antibacterianos , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control
8.
Virol J ; 20(1): 205, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679808

RESUMEN

Bovine viral diarrhea virus (BVDV) affects cattle worldwide causing severe productive and economic loss. In this study, we investigated the subgenotypes of BVDV circulating in cattle samples from the Aysén region, an active cattle breeding area located in southern Chile. Partial amplification of the 5' untranslated region (UTR) was performed by polymerase chain reaction (PCR), and twelve samples were analyzed by Sanger sequencing and phylogenetic analysis. Eight samples were identified as belonging to Pestivirus bovis subgenotype 1e, three to 1-b, and one to 1-d. The phylogenetic analyses performed revealed a marked distance between these now-identified strains and those previously reported in the country. These findings support the need to continually expand the analysis of the variability of the viral phylogeny for the currently circulating BVDV strains and to update the vaccines recommended for this livestock area and surrounding areas.


Asunto(s)
Virus de la Diarrea Viral Bovina , Animales , Bovinos , Chile/epidemiología , Filogenia , Virus de la Diarrea Viral Bovina/genética , Regiones no Traducidas 5' , Diarrea
9.
Anim Reprod Sci ; 252: 107226, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027990

RESUMEN

Superovulation is a drug-based method used in cattle to stimulate the ovarian folliculogenesis and the number of oocytes and transferable embryos. The present study aimed to test the effects of recombinant FSH (bscrFSH) and pituitary FSH (FSH-p) on ovarian response and in vivo embryo production in superovulated dairy heifers inseminated with unsorted and sex-sorted semen. Forty healthy Holstein heifers subjected to a superovulation (SOV) protocol by using FSH-p or bscrFSH were divided randomly into four groups: a) FSH-p inseminated with unsorted semen (USP; n = 10), b) FSH-p inseminated with sex-sorted semen (SSP; n = 10), c) bscrFSH inseminated with unsorted semen (USR; n = 10), and d) bscrFSH inseminated with sex-sorted semen (SSR; n = 10). Ultrasonography was carried out on Day 8 (estrus) and Day 15 (embryo collection) to evaluate the ovarian structures [follicles (FL), corpora lutea (CL), and non-ovulated follicles (NOFL)]. Embryonic-derived parameters were scored on Day 15 [total structures collected (TS), unfertilised oocytes (UFOs), total embryos (TEs), transferable embryos (TFEs), freezable embryos (FEs), and degenerated embryos (DEs)]. No differences were observed regarding ovarian structures (FL and NOFL) irrespective of SOV protocol or group assessed (P > 0.05). CL increased in bscrFSH-derived SOV protocol (P < 0.05). On Day 15, the embryonic-derived parameters TEs, TFEs, and FEs decreased in SSP/SSR compared to USP/USR (P < 0.05). Differences were observed regarding UFOs, with a greater number in SSP and SSR (P = 0.01). In conclusion, the bscrFSH-derived SOV protocol showed improved results compared to FSH-p-derived SOV protocol regarding ovarian (CL) and embryo-derived (TFE) parameters irrespective of the type of semen used.


Asunto(s)
Inseminación Artificial , Semen , Animales , Bovinos , Femenino , Embrión de Mamíferos , Hormona Folículo Estimulante/farmacología , Inseminación Artificial/veterinaria , Semen/fisiología , Superovulación
10.
Biomater Adv ; 143: 213167, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36356469

RESUMEN

Effective cytokine treatments often require high- and multiple-dose due to the short half-life of these molecules. Here, porcine interferon-alpha (IFNα) is encapsulated in PLGA-chitosan microparticles (IFNα-MPs) to accomplish both slow drug release and drug protection from degradation. A procedure that combines emulsion and spray-drying techniques yielded almost spherical microspheres with an average diameter of 3.00 ± 1.50 µm. SEM, Microtrac, and Z-potential analyses of three IFNα-MP batches showed similar results, indicating the process is reproducible. These studies supported molecular evidence obtained in FTIR analysis, which indicated a compact structure of IFNα-MPs. Consistently, IFNα release kinetics assessed in vitro followed a zero-order behavior typical of sustained release from a polymeric matrix. This study showed that IFNα-MPs released bioactive molecules for at least 15 days, achieving IFNα protection. In addition, pigs treated with IFNα-MPs exhibited overexpression of IFNα-stimulated genes 16 days after treatment. Instead, the expression levels of these genes decreased after day 4th in pigs treated with non-encapsulated IFNα. In vitro and in vivo experiments demonstrated that the formulation improved the prophylactic and therapeutic potential of IFNα, accomplishing molecule protection and long-term release for at least two weeks. The procedure used to obtain IFNα-MPs is reproducible, scalable, and suitable for encapsulating other drugs.


Asunto(s)
Quitosano , Porcinos , Animales , Interferón-alfa , Tamaño de la Partícula , Microesferas , Composición de Medicamentos/métodos
12.
Animals (Basel) ; 12(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35049777

RESUMEN

Over the last few years, several commercial FSH products have been developed for cattle superovulation (SOV) purposes in Multiple Ovulation and Embryo Transfer (MOET) programs. The SOV response is highly variable among individuals and remains one of the main limiting factors in obtaining a profitable number of transferable embryos. In this study, follicle stimulating hormone (FSH) from different origins was included in two SOV protocols, (a) FSH from purified pig pituitary extract (NIH-FSH-p; two doses/day, 12 h apart, four consecutive days); and (b) extra-long-acting bovine recombinant FSH (bscrFSH; a single dose/day, four consecutive days), to test the effects of bscrFSH on the ovarian response, hormone profile levels, in vivo embryo production and the pluripotency gene expression of the obtained embryos. A total of 68 healthy primiparous red Angus cows (Bos taurus) were randomly distributed into two experimental groups (n = 34 each). Blood sample collection for progesterone (P4) and cortisol (C) level determination was performed together with ultrasonographic assessment for ovarian size, follicles (FL) and corpora lutea (CL) quantification in each SOV protocol (Day 0, 4, 8, and 15). Moreover, FSH profiles were monitorised throughout both protocols (Day 0, 4, 5, 6, 7, 8, 9, 10, and 15). In vivo embryo quantity and quality (total structures, morulae, blastocysts, viable, degenerated and blocked embryos) were recorded in each SOV protocol. Finally, embryo quality in both protocols was assessed by the analysis of the expression level of crucial genes for early embryo development (OCT4, IFNt, CDX2, BCL2, and BAX). P4 and cortisol concentration peaks in both SOV protocols were obtained on Day 15 and Day 8, respectively, which were statistically different compared to the other time-points (p < 0.05). Ovarian dimensions increased from Day 0 to Day 15 irrespective of the SOV protocol considered (p < 0.05). Significant changes in CL number were observed over time till Day 15 irrespective of the SOV protocol applied (p < 0.05), being non- significantly different between SOV protocols within each time-point (p > 0.05). The number of CL was higher on Day 15 in the bscrFSH group compared to the NIH-FSH-p group (p < 0.05). The number of embryonic structures recovered was higher in the bscrFSH group (p = 0.025), probably as a result of a tendency towards a greater number of follicles developed compared to the NIH-FSH-p group. IFNt and BAX were overexpressed in embryos from the bscrFSH group (p < 0.05), with a fold change of 16 and 1.3, respectively. However, no statistical differences were detected regarding the OCT4, CDX2, BCL2, and BCL2/BAX expression ratio (p > 0.05). In conclusion, including bscrFSH in SOV protocols could be an important alternative by reducing the number of applications and offering an improved ovarian response together with better embryo quality and superior performance in embryo production compared to NIH-FSH-p SOV protocols.

13.
Proteins ; 89(11): 1557-1564, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34250652

RESUMEN

The neutralization of tumor necrosis factor alpha (TNFα) with biopharmaceuticals is a successful therapy for inflammatory diseases. Currently, one of the main TNFα-antagonists is Etanercept, a dimeric TNF-R2 ectodomain. Considering that TNFα and its receptors are homotrimers, we proposed that a trimeric TNF-R2 ectodomain could be an innovative TNFα-antagonist. Here, the 3cTNFR2 protein was designed by the fusion of the TNF-R2 ectodomain with the collagen XV trimerization domain. 3cTNFR2 was produced in HEK293 cells and purified by immobilized metal affinity chromatography. Monomers, dimers, and trimers of 3cTNFR2 were detected. The interaction 3cTNFR2-TNFα was assessed. By microscale thermophoresis, the KD value for the interaction was 4.17 ± 0.88 nM, and complexes with different molecular weights were detected by size exclusion chromatography-high performance liquid chromatography. Moreover, 3cTNFR2 neutralized the TNFα-induced cytotoxicity totally in vitro. Although more studies are required to evaluate the anti-inflammatory effect, the results suggest that 3cTNFR2 could be a TNFα-antagonist agent.


Asunto(s)
Antiinflamatorios/farmacología , Colágeno/genética , Endotoxinas/antagonistas & inhibidores , Etanercept/farmacología , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Supervivencia Celular/efectos de los fármacos , Colágeno/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidad , Etanercept/química , Etanercept/metabolismo , Expresión Génica , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/toxicidad
14.
J Biotechnol ; 338: 52-62, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34224759

RESUMEN

Vascular endothelial growth factor (VEGF) has essential functions in angiogenesis, endothelial cell proliferation, migration, and tumor invasion. Different approaches have been developed to suppress tumor angiogenesis, which is considered a hallmark of cancer. Anti-VEGF monoclonal antibodies constitute an important strategy for cancer immunotherapy, which has been produced on several platforms. In this study, a novel single-chain anti-VEGF monoclonal antibody (scVEGFmAb) was produced in the goat mammary gland by adenoviral transduction. scVEGFmAb was purified by affinity chromatography. N-glycans were analyzed by exoglycosidase digestion and hydrophilic interaction ultra-performance liquid chromatography coupled to electrospray ionization mass spectrometry. The biological activity of scVEGFmAb was assessed by scratch and mouse aortic ring assays. scVEGFmAb was produced at 0.61 g/L in the goat milk, and its purification rendered 95 % purity. N-glycans attached to scVEGFmAb backbone were mainly neutral biantennary core fucosylated with Galß1,4GlcNAc motif, and charged structures were capped with Neu5Ac and Neu5Gc. The chimeric molecule significantly prevented cell migration and suppressed microvessel sprouting. These results demonstrated for the first time the feasibility of producing an anti-VEGF therapeutic antibody in the milk of non-transgenic goats with the potential to counteract tumor angiogenesis.


Asunto(s)
Leche , Factor A de Crecimiento Endotelial Vascular , Animales , Proliferación Celular , Cabras , Ratones , Polisacáridos , Factor A de Crecimiento Endotelial Vascular/genética
15.
Proteins ; 89(11): 1508-1521, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34219271

RESUMEN

Tumor necrosis factor-alpha (TNFα) inhibitors could prevent neurological disorders systemically, but their design generally relies on molecules unable to cross the blood-brain barrier (BBB). This research was aimed to design and characterize a novel TNFα inhibitor based on the angiopeptide-2 as a BBB shuttle molecule fused to the extracellular domain of human TNFα receptor 2 and a mutated vascular endothelial growth factor (VEGF) dimerization domain. This new chimeric protein (MTV) would be able to trigger receptor-mediated transcytosis across the BBB via low-density lipoprotein receptor-related protein-1 (LRP-1) and inhibit the cytotoxic effect of TNFα more efficiently because of its dimeric structure. Stably transformed CHO cells successfully expressed MTV, and its purification by Immobilized-Metal Affinity Chromatography (IMAC) rendered high purity degree. Mutated VEGF domain included in MTV did not show cell proliferation or angiogenic activities measured by scratch and aortic ring assays, which corroborate that the function of this domain is restricted to dimerization. The pairs MTV-TNFα (Kd 279 ± 40.9 nM) and MTV-LRP1 (Kd 399 ± 50.5 nM) showed high affinity by microscale thermophoresis, and a significant increase in cell survival was observed after blocking TNFα with MTV in a cell cytotoxicity assay. Also, the antibody staining in CHOK1 and bEnd3 cells demonstrated the adhesion of MTV to the LRP1 receptor located in the cell membrane. These results provide compelling evidence for the proper functioning of the three main domains of MTV individually, which encourage us to continue the research with this new molecule as a potential candidate for the systemic treatment of neurological disorders.


Asunto(s)
Antiinflamatorios/farmacología , Endotoxinas/antagonistas & inhibidores , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Péptidos/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Barrera Hematoencefálica/metabolismo , Células CHO , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cricetulus , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidad , Expresión Génica , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Modelos Biológicos , Modelos Moleculares , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas/métodos , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/toxicidad , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
N Biotechnol ; 61: 11-21, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33157282

RESUMEN

Complex recombinant glycoproteins produced as potential biopharmaceuticals in goat's milk have an aberrant pattern of N-glycosylation due to the lack of multi-antennary structures. Overexpression of glycosyltransferases may increase oligosaccharide branching of the desired glycoproteins. Here, human erythropoietin fused to human IgG Fc (EPO-Fc) was co-expressed with N-acetyl-glucosaminyltransferase-IVa (GnT-IVa) by adenoviral transduction in goat mammary gland to evaluate the in vivo modification of N-glycosylation pattern in this tissue. Adenoviral vectors, containing the EPO-Fc and GnT-IVa sequences were assembled for in vitro and in vivo expression in mammalian cell culture or in goat mammary gland. Protein detection was assessed by gel electrophoresis and western blot, and N-glycans were identified by HPLC and mass spectrometry. GnT-IVa overexpression and its colocalization with EPO-Fc in the Golgi apparatus of SiHa cells were demonstrated. N-glycan analysis of in vitro and in vivo expression of EPO-Fc modified by GnT-IVa (EPO-Fc/GnT-IVa) showed an increase in high molecular weight structures, which corresponded to tri- and tetra-antennary N-glycans in SiHa cells and mostly tri-antennary N-glycans in goat's milk from transformed mammary tissue. The results confirmed that successful modification of the goat mammary gland secretion pathway could be achieved by co-expressing glycoenzymes together with the glycoprotein of interest. This is the first report of modification of the N-glycosylation pattern in the goat mammary gland in vivo, and constitutes a step forward for improving the use of the mammary gland as a bioreactor for the production of complex recombinant proteins.


Asunto(s)
Glicoproteínas/metabolismo , Glándulas Mamarias Animales/metabolismo , Animales , Células Cultivadas , Eritropoyetina , Femenino , Glicosilación , Cabras , Humanos , N-Acetilglucosaminiltransferasas , Transducción Genética
17.
Biochem J ; 477(17): 3299-3311, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32941643

RESUMEN

TNFα is a pro-inflammatory cytokine that is a therapeutic target for inflammatory autoimmune disorders. Thus, TNFα antagonists are successfully used for the treatment of these disorders. Here, new association patterns of rhTNFα and its antagonists Adalimumab and Etanercept are disclosed. Active rhTNFα was purified by IMAC from the soluble fraction of transformed Escherichia coli. Protein detection was assessed by SDS-PAGE and Western blot. The KD values for rhTNFα interactions with their antagonists were obtained by non-competitive ELISA and by microscale thermophoresis (MST). Molecular sizes of the complexes were evaluated by size-exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Surprisingly, both antagonists recognized the monomeric form of rhTNFα under reducing and non-reducing conditions, indicating unexpected bindings of the antagonists to linear epitopes and to rhTNFα monomers. For the first time, the interactions of rhTNFα with Adalimumab and Etanercept were assessed by MST, which allows evaluating molecular interactions in solution with a wide range of concentrations. Biphasic binding curves with low and high KD values (<10-9 M and >10-8 M) were observed during thermophoresis experiments, suggesting the generation of complexes with different stoichiometry, which were confirmed by SEC-HPLC. Our results demonstrated the binding of TNFα-antagonists with rhTNFα monomers and linear epitopes. Also, complexes of high molecular mass were observed. This pioneer investigation constitutes valuable data for future approaches into the study of the interaction mechanism of TNFα and its antagonists.


Asunto(s)
Adalimumab/química , Etanercept/química , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/química
18.
Sci Rep ; 10(1): 12840, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732973

RESUMEN

Currently, the generation of cell lines for the production of recombinant proteins has the limitation of unstable gene expression due to the repeat-induced gene silencing or the loss of transgene copies resulting from recombination events. In this work, we developed a new strategy based on the sequential insertion of transgenes for generating stable clones producing high levels of a chimeric human follicle-stimulating hormone (hscFSH). Gene insertion was done by transducing HEK-293 cells with a lentiviral vector containing a bicistronic transcriptional unit for expressing hscFSH and GFP genes. Clone selection was performed by flow cytometry coupled to cell sorting, and the GFP gene was further removed by CRE-mediated site-specific recombination. High-producing clones of hscFSH were obtained after three rounds of lentiviral transduction. Expression levels increased in a step-wise manner from 7 to 23 pg/cell/day, with a relatively constant rate of 7 pg/cell/day in each round of transduction. The GFP gene was successfully removed from the cell genome without disturbing the hscFSH gene expression. Clones generated using this approach showed stable expression levels for more than two years. This is the first report describing the sequential insertion of transgenes as an alternative for increasing the expression levels of transformed cell lines. The methodology described here could notably impact on biotechnological industry by improving the capacity of mammalian cells to produce biopharmaceuticals.


Asunto(s)
Hormona Folículo Estimulante/biosíntesis , Mutagénesis Insercional/métodos , Transgenes/genética , Biotecnología/métodos , Células Clonales , Citometría de Flujo/métodos , Hormona Folículo Estimulante/genética , Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Lentivirus/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transducción Genética
19.
Viruses ; 12(4)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244384

RESUMEN

Recombinant vaccines have low-cost manufacturing, regulatory requirements, and reduced side effects compared to attenuated or inactivated vaccines. In the porcine industry, post-weaning multisystemic disease syndrome generates economic losses, characterized by progressive weight loss and weakness in piglets, and it is caused by porcine circovirus type 2 (PCV2). We designed a chimeric antigen (Qm1) to assemble the main exposed epitopes of the Cap-PCV2 protein on the capsid protein of the tobacco necrosis virus (TNV). This design was based on the Cap-N-terminal of an isolated PCV2 virus obtained in Chile. The virus was characterized, and the sequence was clustered within the PCV2 genotype b clade. This chimeric protein was expressed as inclusion bodies in both monomeric and multimeric forms, suggesting a high-molecular-weight aggregate formation. Pigs immunized with Qm1 elicited a strong and specific antibody response, which reduced the viral loads after the PCV2 challenge. In conclusion, the implemented design allowed for the generation of an effective vaccine candidate. Our proposal could be used to express the domains or fragments of antigenic proteins, whose structural complexity does not allow for low-cost production in Escherichia coli. Hence, other antigen domains could be integrated into the TNV backbone for suitable antigenicity and immunogenicity. This work represents new biotechnological strategies, with a reduction in the costs associated with vaccine development.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Circovirus/inmunología , Vacunas Virales/genética , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Chile/epidemiología , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Circovirus/clasificación , Circovirus/genética , Epítopos , Fermentación , Filogenia , Síndrome Multisistémico de Emaciación Posdestete Porcino/epidemiología , Síndrome Multisistémico de Emaciación Posdestete Porcino/prevención & control , Porcinos , Tombusviridae/genética , Vacunación/veterinaria , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/metabolismo , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Vacunas Virales/metabolismo
20.
Fish Shellfish Immunol ; 88: 587-594, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30885741

RESUMEN

Antimicrobial peptides (AMPs) are amphipathic peptides, which play an important role in innate defence. These peptides are gene-encoded and either constitutively expressed and/or upregulated during an infection. NK-lysins are AMPs with a three-dimensional globular structure. They are larger molecules, which comprise 74-78 amino acid residues and six conserved cysteine residues forming three disulphide bonds. Cathelicidins are a family of antimicrobial peptides that act as important components of the innate immune system with a broad spectrum of antimicrobial activity and immunomodulatory properties. Although they are widely studied in mammals, little is known about their immunomodulatory function. In the present study, we identified and characterized for the first time four NK-lysin-like transcripts from Atlantic salmon (Salmo salar) based on EST reported sequences. In vitro, NK-lysin derived peptides were able to induce the expression of IL-1ß and IL-8 in Salmo salar head kidney leukocytes. We also tested Salmo salar cathelicidin 1 derived peptide in a similar assay, showing its ability to induce the expression of IFN-γ. These results indicate that NK-lysin and cathelicidin 1 derived peptides are able to modulated immune response, suggesting their potential use to enhance immune response in fish.


Asunto(s)
Catelicidinas/genética , Proteínas de Peces/inmunología , Factores Inmunológicos/inmunología , Proteolípidos/genética , Salmo salar/inmunología , Animales , Catelicidinas/inmunología , Enfermedades de los Peces/inmunología , Riñón Cefálico/citología , Riñón Cefálico/inmunología , Inmunidad Innata , Interferón gamma/inmunología , Leucocitos/inmunología , Proteolípidos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...