Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1218: 53-106, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25319646

RESUMEN

This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Interferencia de ARN , ARN Interferente Pequeño/química , Transfección/métodos , Células CACO-2 , Línea Celular Tumoral , Respiración de la Célula , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fluorocarburos/química , Vectores Genéticos , Células HeLa , Humanos , Iminas/química , Radioisótopos de Yodo , Campos Magnéticos , Microburbujas , Fosfolípidos/química , Plásmidos/química , Plásmidos/metabolismo , Polietilenos/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ultrasonido
2.
Pharm Res ; 32(1): 103-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25033763

RESUMEN

PURPOSE: To explore the potential of magnetofection in delivering pDNA to primary mouse embryonic fibroblasts (PMEFs) and porcine fetal fibroblasts (PFFs) and investigate an effect of magnetic cell labeling on transfection efficacy. METHODS: The formulation and a dose of the magnetic vector were optimized. The efficacy of the procedure was quantified by vector internalization, transgene expression and cell iron loading upon specific labeling with Ab-conjugated magnetic beads or non-specific labeling with MNPs. RESULTS: Up to sixty percent of PMEF and PFF cells were transfected at low pDNA doses of 4-16 pg pDNA/cell. Specific labeling of the PMEFs with MNPs, resulted in a 3- and 2-fold increase in pDNA internalization upon magnetofection and lipofection, respectively, that yielded a 2-4-fold increase in percent of transgene-expressing cells. Non-specific cell labeling had no effect on the efficacy of the reporter expression, despite the acquisition of similar magnetic moments per cell. In PFFs, specific magnetic labeling of the cell surface receptors inhibited internalization and transfection efficacy. CONCLUSIONS: Magnetic labeling of cell-surface receptors combined with the application of an inhomogenous magnetic field (nanomagnetic activation) can affect the receptor-mediated internalization of delivery vectors and be used to control nucleic acid delivery to cells.


Asunto(s)
ADN/administración & dosificación , Portadores de Fármacos/administración & dosificación , Fibroblastos/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Transfección/métodos , Animales , Células Cultivadas , ADN/genética , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Ratones , Microscopía Electrónica de Transmisión , Plásmidos , Cultivo Primario de Células , Coloración y Etiquetado , Propiedades de Superficie , Porcinos
3.
Pharm Res ; 29(5): 1344-65, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22222384

RESUMEN

PURPOSE: To optimize silica-iron oxide magnetic nanoparticles with surface phosphonate groups decorated with 25-kD branched polyethylenimine (PEI) for gene delivery. METHODS: Surface composition, charge, colloidal stabilities, associations with adenovirus, magneto-tranduction efficiencies, cell internalizations, in vitro toxicities and MRI relaxivities were tested for the particles decorated with varying amounts of PEI. RESULTS: Moderate PEI-decoration of MNPs results in charge reversal and destabilization. Analysis of space and time resolved concentration changes during centrifugation clearly revealed that at >5% PEI loading flocculation gradually decreases and sufficient stabilization is achieved at >10%. The association with adenovirus occurred efficiently at levels over 5% PEI, resulting in the complexes stable in 50% FCS at a PEI-to-iron w/w ratio of ≥7%; the maximum magneto-transduction efficiency was achieved at 9-12% PEI. Primary silica iron oxide nanoparticles and those with 11.5% PEI demonstrated excellent r(2)* relaxivity values (>600 s(-1)(mM Fe)(-1)) for the free and cell-internalized particles. CONCLUSIONS: Surface decoration of the silica-iron oxide nanoparticles with a PEI-to-iron w/w ratio of 10-12% yields stable aqueous suspensions, allows for efficient viral gene delivery and labeled cell detection by MRI.


Asunto(s)
Compuestos Férricos/química , Técnicas de Transferencia de Gen , Vectores Genéticos/química , Magnetismo , Nanopartículas/química , Dióxido de Silicio/química , Adenoviridae/genética , Animales , Línea Celular , Coloides/química , Estabilidad de Medicamentos , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Imagen por Resonancia Magnética , Ratones , Microscopía Electrónica de Transmisión , Modelos Moleculares , Polietileneimina/química , Ratas , Propiedades de Superficie , Difracción de Rayos X
4.
Blood ; 117(16): e171-81, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21357765

RESUMEN

Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.


Asunto(s)
Separación Celular/métodos , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Animales , Antígenos Ly/genética , Vectores Genéticos/química , Células Madre Hematopoyéticas/metabolismo , Humanos , Subunidad gamma Común de Receptores de Interleucina/genética , Células Jurkat , Células K562 , Magnetismo , Proteínas de la Membrana/genética , Células Madre Mesenquimatosas/metabolismo , Ratones , Nanopartículas/química , Transfección
5.
Methods Mol Biol ; 605: 487-525, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20072903

RESUMEN

In a magnetofection procedure, self-assembling complexes of enhancers like cationic lipids with plasmid DNA or small interfering RNA (siRNA) are associated with magnetic nanoparticles and are then concentrated at the surface of cultured cells by applying a permanent inhomogeneous magnetic field. This process results in a considerable improvement in transfection efficiency compared to transfection carried out with nonmagnetic gene vectors. This article describes how to synthesize magnetic nanoparticles suitable for nucleic acid delivery by liposomal magnetofection and how to test the plasmid DNA and siRNA association with the magnetic components of the transfection complex. Protocols are provided for preparing magnetic lipoplexes, performing magnetofection in adherent and suspension cells, estimating the association/internalization of vectors with cells, performing reporter gene analysis, and assessing cell viability. The methods described here can be used to screen magnetic nanoparticles and formulations for the delivery of nucleic acids by liposomal magnetofection in any cell type.


Asunto(s)
ADN/administración & dosificación , Liposomas/química , Magnetismo , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Transfección , Línea Celular Tumoral , Supervivencia Celular , Expresión Génica , Genes Reporteros , Humanos , Hierro/química , Plásmidos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA