Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630754

RESUMEN

PURPOSE: Cancer patients frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NETs), we have investigated the mechanisms, consequences and the occurrence of such phenomena in patients undergoing radiotherapy. EXPERIMENTAL DESIGN: NETosis was analyzed in cultures of neutrophils isolated from healthy donors, cancer patients and cancer-bearing mice under confocal microscopy. Cocultures of radiation-induced NETs, immune effector lymphocytes and tumor cells were used to study the effects of irradiation-induced NETs on immune cytotoxicity. Radiation-induced NETs were intravenously injected to mice assessing their effects on metastasis. Circulating NETs in irradiated cancer patients were measured by ELISA methods detecting MPO-DNA complexes and citrullinated H3. RESULTS: Very low γ-radiation doses (0.5-1 Gy) given to neutrophils elicit NET formation in a manner dependent on oxidative stress, NADPH oxidase activity and autocrine interleukin-8. Radiation-induced NETs interfere with NK- and T-cell cytotoxicity. As a consequence, pre-injection of irradiation-induced NETs increases the number of successful metastases in mouse tumor models. Increases in circulating NETs were readily detected in two prospective series of patients following the first fraction of their radiotherapy courses. CONCLUSIONS: NETosis is induced by low-dose ionizing irradiation in a neutrophil-intrinsic fashion and radiation-induced NETs are able to interfere with immune-mediated cytotoxicity. Radiation-induced NETs foster metastasis in mouse models and can be detected in the circulation of patients undergoing conventional radiotherapy treatments.

2.
EMBO Mol Med ; 15(11): e17804, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37782273

RESUMEN

NK-cell reactivity against cancer is conceivably suppressed in the tumor microenvironment by the interaction of the inhibitory receptor NKG2A with the non-classical MHC-I molecules HLA-E in humans or Qa-1b in mice. We found that intratumoral delivery of NK cells attains significant therapeutic effects only if co-injected with anti-NKG2A and anti-Qa-1b blocking monoclonal antibodies against solid mouse tumor models. Such therapeutic activity was contingent on endogenous CD8 T cells and type-1 conventional dendritic cells (cDC1). Moreover, the anti-tumor effects were enhanced upon combination with systemic anti-PD-1 mAb treatment and achieved partial abscopal efficacy against distant non-injected tumors. In xenografted mice bearing HLA-E-expressing human cancer cells, intratumoral co-injection of activated allogeneic human NK cells and clinical-grade anti-NKG2A mAb (monalizumab) synergistically achieved therapeutic effects. In conclusion, these studies provide evidence for the clinical potential of intratumoral NK cell-based immunotherapies that exert their anti-tumor efficacy as a result of eliciting endogenous T-cell responses.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias , Ratones , Humanos , Animales , Anticuerpos Monoclonales/uso terapéutico , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Linfocitos T CD8-positivos , Microambiente Tumoral
3.
Mol Ther Nucleic Acids ; 33: 668-682, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37650116

RESUMEN

Intratumoral immunotherapy strategies for cancer based on interleukin-12 (IL-12)-encoding cDNA and mRNA are under clinical development in combination with anti-PD-(L)1 monoclonal antibodies. To make the most of these approaches, we have constructed chimeric mRNAs encoding single-chain IL-12 fused to single-chain fragment variable (scFv) antibodies that bind to transforming growth factor ß (TGF-ß) and CD137 (4-1BB). Several neutralizing TGF-ß agents and CD137 agonists are also undergoing early-phase clinical trials. To attain TGF-ß and CD137 binding by the constructions, we used bispecific tandem scFv antibodies (taFvs) derived from the specific 1D11 and 1D8 monoclonal antibodies (mAbs), respectively. Transfection of mRNAs encoding the chimeric constructs achieved functional expression of the proteins able to act on their targets. Upon mRNA intratumoral injections in the transplantable mouse cancer models CT26, MC38, and B16OVA, potent therapeutic effects were observed following repeated injections into the tumors. Efficacy was dependent on the number of CD8+ T cells able to recognize tumor antigens that infiltrated the malignant tissue. Although the abscopal effects on concomitant uninjected lesions were modest, such distant effects on untreated lesions were markedly increased when combined with systemic PD-1 blockade.

4.
Cell Rep Med ; 4(4): 101009, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040772

RESUMEN

Immune checkpoint-inhibitor combinations are the best therapeutic option for advanced hepatocellular carcinoma (HCC) patients, but improvements in efficacy are needed to improve response rates. We develop a multifocal HCC model to test immunotherapies by introducing c-myc using hydrodynamic gene transfer along with CRISPR-Cas9-mediated disruption of p53 in mouse hepatocytes. Additionally, induced co-expression of luciferase, EGFP, and the melanosomal antigen gp100 facilitates studies on the underlying immunological mechanisms. We show that treatment of the mice with a combination of anti-CTLA-4 + anti-PD1 mAbs results in partial clearance of the tumor with an improvement in survival. However, the addition of either recombinant IL-2 or an anti-CD137 mAb markedly improves both outcomes in these mice. Combining tumor-specific adoptive T cell therapy to the aCTLA-4/aPD1/rIL2 or aCTLA-4/aPD1/aCD137 regimens enhances efficacy in a synergistic manner. As shown by multiplex tissue immunofluorescence and intravital microscopy, combined immunotherapy treatments enhance T cell infiltration and the intratumoral performance of T lymphocytes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Anticuerpos Monoclonales , Terapia Combinada , Inmunoterapia/métodos
5.
Cancer Immunol Res ; 11(2): 184-198, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478221

RESUMEN

IL12-based local gene therapy of cancer constitutes an active area of clinical research using plasmids, mRNAs, and viral vectors. To improve antitumor effects, we have experimentally tested the combination of mRNA constructs encoding IL12 and IL18. Moreover, we have used a form of IL18 [decoy-resistant IL18 (DR-18)] which has preserved bioactivity but does not bind to the IL18 binding protein decoy receptor. Both cytokines dramatically synergize to induce IFNγ release from mouse splenocytes, and, if systemically cotransferred to the liver, they mediate lethal toxicity. However, if given intratumorally to B16OVA tumor-bearing mice, the combination attains efficacy against the directly treated tumor and moderate tumor-delaying activity on distant noninjected lesions. Cotreatment was conducive to the presence of more activated CD8+ T cells in the treated and noninjected tumors. In keeping with these findings, the efficacy of treatment was contingent on the integrity of CD8+ T cells and cDC1 dendritic cells in the treated mice. Furthermore, efficacy of IL12 plus DR-18 local mRNA coinjection against distant concomitant tumors could be enhanced upon combination with anti-PD-1 mAb systemic treatment, thus defining a feasible synergistic immunotherapy strategy.


Asunto(s)
Interleucina-18 , Neoplasias , Animales , Ratones , Neoplasias/genética , Neoplasias/terapia , Linfocitos T CD8-positivos , Inmunoterapia , Interleucina-12/metabolismo
6.
Nat Commun ; 12(1): 7296, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911975

RESUMEN

CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.


Asunto(s)
Complejo CD3/inmunología , Linfocitos T CD8-positivos/inmunología , Complejo Receptor-CD3 del Antígeno de Linfocito T/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Complejo CD3/genética , Proliferación Celular , Citocinas/genética , Citocinas/inmunología , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Complejo Receptor-CD3 del Antígeno de Linfocito T/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética
7.
J Pathol ; 255(2): 190-201, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34184758

RESUMEN

Neutrophil extracellular traps (NETs) are webs of extracellular nuclear DNA extruded by dying neutrophils infiltrating tissue. NETs constitute a defence mechanism to entrap and kill fungi and bacteria. Tumours induce the formation of NETs to the advantage of the malignancy via a variety of mechanisms shown in mouse models. Here, we investigated the presence of NETs in a variety of human solid tumours and their association with IL-8 (CXCL8) protein expression and CD8+ T-cell density in the tumour microenvironment. Multiplex immunofluorescence panels were developed to identify NETs in human cancer tissues by co-staining with the granulocyte marker CD15, the neutrophil marker myeloperoxidase and citrullinated histone H3 (H3Cit), as well as IL-8 protein and CD8+ T cells. Three ELISA methods to detect and quantify circulating NETs in serum were optimised and utilised. Whole tumour sections and tissue microarrays from patients with non-small cell lung cancer (NSCLC; n = 14), bladder cancer (n = 14), melanoma (n = 11), breast cancer (n = 31), colorectal cancer (n = 20) and mesothelioma (n = 61) were studied. Also, serum samples collected retrospectively from patients with metastatic melanoma (n = 12) and NSCLC (n = 34) were ELISA assayed to quantify circulating NETs and IL-8. NETs were detected in six different human cancer types with wide individual variation in terms of tissue density and distribution. At least in NSCLC, bladder cancer and metastatic melanoma, NET density positively correlated with IL-8 protein expression and inversely correlated with CD8+ T-cell densities. In a series of serum samples from melanoma and NSCLC patients, a positive correlation between circulating NETs and IL-8 was found. In conclusion, NETs are detectable in formalin-fixed human biopsy samples from solid tumours and in the circulation of cancer patients with a considerable degree of individual variation. NETs show a positive association with IL-8 and a trend towards a negative association with CD8+ tumour-infiltrating lymphocytes. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Trampas Extracelulares/inmunología , Interleucina-8/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Humanos
8.
Cancer Immunol Res ; 6(3): 267-275, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29362221

RESUMEN

The chemokine axis CCR6/CCL20 is involved in cancer progression in a variety of tumors. Here, we show that CCR6 is expressed by melanoma cells. The CCR6 ligand, CCL20, induces migration and proliferation in vitro, and enhances tumor growth and metastasis in vivo Confocal analysis of melanoma tissues showed that CCR6 is expressed by tumor cells, whereas CCL20 is preferentially expressed by nontumoral cells in the stroma of certain tumors. Stromal CCL20, but not tumoral CCR6, predicted poor survival in a cohort of 40 primary melanoma patients. Tumor-associated macrophages (TAM), independently of their M1/M2 polarization profile, were identified as the main source of CCL20 in primary melanomas that developed metastasis. In addition to CCL20, TAMs expressed TNF and VEGF-A protumoral cytokines, suggesting that melanoma progression is supported by macrophages with a differential activation state. Our data highlight the synergistic interaction between melanoma tumor cells and prometastatic macrophages through a CCR6/CCL20 paracrine loop. Stromal levels of CCL20 in primary melanomas may be a clinically useful marker for assessing patient risk, making treatment decisions, and planning or analyzing clinical trials. Cancer Immunol Res; 6(3); 267-75. ©2018 AACR.


Asunto(s)
Quimiocina CCL20/inmunología , Macrófagos/inmunología , Melanoma/inmunología , Neoplasias Cutáneas/inmunología , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Quimiocina CCL20/genética , Progresión de la Enfermedad , Humanos , Melanoma/patología , Ratones , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...