Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 12(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36295818

RESUMEN

Fibromyalgia (FM) is a pain syndrome characterized by chronic widespread pain and CNS comorbidities. Tilia americana var. mexicana is a medicinal species used to treat anxiety, insomnia, and acute or chronic pain. However, its spectrum of analgesic efficacy for dysfunctional pain is unknown. To investigate a possible therapeutic alternative for FM-type pain, an aqueous Tilia extract (TE) and its flavonoid fraction (FF) containing rutin and isoquercitrin were evaluated alone and/or combined with clinical drugs (tramadol-TRA and pramipexol-PRA) using the reserpine-induced FM model in rats. Chromatographic analysis allowed the characterization of flavonoids, while a histological analysis confirmed their presence in the brain. TE (10-100 mg/kg, i.p.) and FF (10-300 mg/kg, i.p.) produced significant and dose-dependent antihyperalgesic and antiallodynic effects equivalent to TRA (3-10 mg/kg, i.p.) or PRA (0.01-1 mg/kg, s.c.). Nevertheless, the combination of FF + TRA or FF + PRA resulted in an antagonistic interaction by possible competitive action on the serotonin transporter or µ-opioid and D2 receptors, respectively, according to the in silico analysis. Flavonoids were identified in cerebral regions because of their self-epifluorescence. In conclusion, Tilia possesses potential properties to relieve FM-type pain. However, the consumption of this plant or flavonoids such as quercetin derivatives in combination with analgesic drugs might reduce their individual benefits.

2.
Brain Res ; 1796: 148083, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108782

RESUMEN

The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.


Asunto(s)
Hipotálamo , Hormona Liberadora de Tirotropina , Animales , Femenino , Masculino , Ratas , Corticosterona , Hipotálamo/metabolismo , Núcleo Talámico Mediodorsal , Actividad Motora , Ratas Wistar , Receptores de Hormona Liberadora de Tirotropina/genética , Receptores de Hormona Liberadora de Tirotropina/metabolismo , ARN Mensajero/metabolismo , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo
3.
Brain Struct Funct ; 227(7): 2329-2347, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35934753

RESUMEN

Hypophysiotropic thyrotropin-releasing hormone (TRH) neurons function as metabolic sensors that regulate the thyroid axis and energy homeostasis. Less is known about the role of other hypothalamic TRH neurons. As central administration of TRH decreases food intake and increases histamine in the tuberomammillary nuclei (TMN), and TMN histamine neurons are densely innervated by TRH fibers from an unknown origin, we mapped the location of TRH neurons that project to the TMN. The retrograde tracer, cholera toxin B subunit (CTB), was injected into the TMN E1-E2, E4-E5 subdivisions of adult Sprague-Dawley male rats. TMN projecting neurons were observed in the septum, preoptic area, bed nucleus of the stria terminalis (BNST), perifornical area, anterior paraventricular nucleus, peduncular and tuberal lateral hypothalamus (TuLH), suprachiasmatic nucleus and medial amygdala. However, CTB/pro-TRH178-199 double-labeled cells were only found in the TuLH. The specificity of the retrograde tract-tracing result was confirmed by administering the anterograde tracer, Phaseolus vulgaris leuco-agglutinin (PHAL) into the TuLH. Double-labeled PHAL-pro-TRH boutons were identified in all subdivisions of the TMN. TMN neurons double-labeled for histidine decarboxylase (Hdc)/PHAL, Hdc/Trh receptor (Trhr), and Hdc/Trh. Further confirmation of a TuLH-TRH neuronal projection to the TMN was established in a transgenic mouse that expresses Cre recombinase in TRH-producing cells following microinjection of a Cre recombinase-dependent AAV that expresses mCherry into the TuLH. We conclude that, in rodents, the TRH innervation of TMN originates in part from TRH neurons in the TuLH, and that this TRH population may contribute to regulate energy homeostasis through histamine Trhr-positive neurons of the TMN.


Asunto(s)
Área Hipotalámica Lateral , Hormona Liberadora de Tirotropina , Animales , Histamina , Masculino , Ratones , Neuronas , Ratas , Ratas Sprague-Dawley
4.
Front Biosci (Landmark Ed) ; 25(7): 1305-1323, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32114434

RESUMEN

Starvation induces tertiary hypothyroidism in adult rodents. Response of the hypothalamus-pituitary-thyroid (HPT) axis to starvation is stronger in adult males than in females. To improve the description of this sexual dimorphism, we analyzed the dynamics of HPT axis response to fasting at multiple levels. In adult rats of the same cohort, 24 and 48 h of starvation inhibited paraventricular nucleus Trh expression and serum concentrations of TSH and T4 earlier in males than in females, with lower intensity in females than in males. In adult females fasted for 36-72 h, serum TSH concentration decreased after 36 h, when the activity of thyrotropin-releasing hormone (TRH)-degrading ectoenzyme was increased in the median eminence. The kinetics of these events were distinct from those previously observed in male rats. We suggest that the sex difference in TSH secretion kinetics is driven not only at the level of paraventricular nucleus TRH neurons, but also by differences in post-secretory catabolism of TRH, with enhancement of TRH-degrading activity more sustained in male than female animals.


Asunto(s)
Ayuno/metabolismo , Regulación de la Expresión Génica , Núcleo Hipotalámico Paraventricular/metabolismo , Glándula Tiroides/metabolismo , Animales , Femenino , Masculino , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Hormona Liberadora de Tirotropina/genética , Receptores de Hormona Liberadora de Tirotropina/metabolismo , Factores Sexuales , Tirotropina/sangre , Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo , Factores de Tiempo
5.
Artículo en Inglés | MEDLINE | ID: mdl-31293518

RESUMEN

Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of ß2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, ß2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making ß2-tanycytes a hub for energy-related regulation of HPT axis activity. ß2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of ß2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, ß2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.

6.
Toxicol Appl Pharmacol ; 329: 173-189, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28579251

RESUMEN

Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that produce neurotoxicity and neuroendocrine disruption. They affect the vasopressinergic system but their disruptive mechanisms are not well understood. Our group reported that rats perinatally exposed to Aroclor-1254 (A1254) and DE-71 (commercial mixtures of PCBs and PBDEs) decrease somatodendritic vasopressin (AVP) release while increasing plasma AVP responses to osmotic activation, potentially emptying AVP reserves required for body-water balance. The aim of this research was to evaluate the effects of perinatal exposure to A1254 or DE-71 (30mgkg/day) on AVP transcription and protein content in the paraventricular and supraoptic hypothalamic nuclei, of male and female rats, by in situ hybridization and immunohistochemistry. cFOS mRNA expression was evaluated in order to determine neuroendocrine cells activation due to osmotic stimulation. Animal groups were: vehicle (control); exposed to either A1254 or DE-71; both, control and exposed, subjected to osmotic challenge. The results confirmed a physiological increase in AVP-immunoreactivity (AVP-IR) and gene expression in response to osmotic challenge as reported elsewhere. In contrast, the exposed groups did not show this response to osmotic activation, they showed significant reduction in AVP-IR neurons, and AVP mRNA expression as compared to the hyperosmotic controls. cFOS mRNA expression increased in A1254 dehydrated groups, suggesting that the AVP-IR decrease was not due to a lack of the response to the osmotic activation. Therefore, A1254 may interfere with the activation of AVP mRNA transcript levels and protein, causing a central dysfunction of vasopressinergic system.


Asunto(s)
Arginina Vasopresina/metabolismo , Contaminantes Ambientales/toxicidad , Éteres Difenilos Halogenados/toxicidad , Células Neuroendocrinas/efectos de los fármacos , Presión Osmótica , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , ARN Mensajero/metabolismo , Núcleo Supraóptico/efectos de los fármacos , Animales , Arginina Vasopresina/genética , Regulación hacia Abajo , Femenino , Masculino , Exposición Materna/efectos adversos , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/patología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/patología , Embarazo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , Ratas Sprague-Dawley , Ratas Wistar , Cloruro de Sodio/administración & dosificación , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/patología , Transcripción Genética
7.
Endocrinology ; 157(8): 3253-65, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27323240

RESUMEN

Hypothalamic-pituitary-thyroid (HPT) axis activity is important for energy homeostasis, and is modified by stress. Maternal separation (MS) alters the stress response and predisposes to metabolic disturbances in the adult. We therefore studied the effect of MS on adult HPT axis activity. Wistar male and female pups were separated from their mothers 3 h/d during postnatal day (PND)2-PND21 (MS), or left nonhandled (NH). Open field and elevated plus maze tests revealed increased locomotion in MS males and anxiety-like behavior in MS females. At PND90, MS females had increased body weight gain, Trh expression in the hypothalamic paraventricular nucleus, and white adipose tissue mass. MS males had increased expression of TRH-degrading enzyme in tanycytes, reduced TSH and T3, and enhanced corticosterone serum concentrations. MS stimulated brown adipose tissue deiodinase 2 activity in either sex. Forty-eight hours of fasting (PND60) augmented serum corticosterone levels similarly in MS or NH females but more in MS than in NH male rats. MS reduced the fasting-induced drop in hypothalamic paraventricular nucleus-Trh expression of males but not of females and abolished the fasting-induced increase in Trh expression in both sexes. Fasting reduced serum concentrations of TSH, T4, and T3, less in MS than in NH males, whereas in females, TSH decreased in MS but not in NH rats, but T4 and T3 decreased similarly in NH and MS rats. In conclusion, MS produced long-term changes in the activity of the HPT axis that were sex specific; response to fasting was partially blunted in males, which could affect their adaptive response to negative energy balance.


Asunto(s)
Aminopeptidasas/genética , Hipotálamo/metabolismo , Privación Materna , Ácido Pirrolidona Carboxílico/análogos & derivados , Inanición/fisiopatología , Glándula Tiroides/fisiología , Hormona Liberadora de Tirotropina/genética , Aminopeptidasas/metabolismo , Animales , Animales Recién Nacidos , Femenino , Masculino , Ácido Pirrolidona Carboxílico/metabolismo , Ratas , Ratas Wistar , Caracteres Sexuales , Inanición/genética , Inanición/metabolismo , Hormona Liberadora de Tirotropina/metabolismo
8.
Psychoneuroendocrinology ; 67: 27-39, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26874559

RESUMEN

Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin's orexigenic action vs. its role as a stress signal are anatomically dissociated.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Hormona Liberadora de Corticotropina/metabolismo , Ghrelina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Arginina/análogos & derivados , Arginina/farmacología , Corticosterona/sangre , Antagonistas del GABA , Técnicas de Silenciamiento del Gen , Ghrelina/administración & dosificación , Infusiones Intraventriculares , Masculino , Ratones , Muscimol/farmacología , Neuropéptido Y/antagonistas & inhibidores , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de Ghrelina/efectos de los fármacos , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
9.
Endocrinology ; 156(7): 2713-23, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25942072

RESUMEN

Fasting down-regulates the hypothalamus-pituitary-thyroid (HPT) axis activity through a reduction of TRH synthesis in neurons of the parvocellular paraventricular nucleus of the hypothalamus (PVN). These TRH neurons project to the median eminence (ME), where TRH terminals are close to the cytoplasmic extensions of ß2 tanycytes. Tanycytes express pyroglutamyl peptidase II (PPII), the TRH-degrading ectoenzyme that controls the amount of TRH that reaches the anterior pituitary. We tested the hypothesis that regulation of ME PPII activity is another mechanism by which fasting affects the activity of the HPT axis. Semiquantitative in situ hybridization histochemistry data indicated that PPII and deiodinase 2 mRNA levels increased in tanycytes after 48 hours of fasting. This increase was transitory, followed by an increase of PPII activity in the ME, and a partial reversion of the reduction in PVN pro-TRH mRNA levels and the number of TRH neurons detected by immunohistochemistry. In fed animals, adrenalectomy and corticosterone treatment did not change ME PPII activity 72 hours later. Methimazole-induced hypothyroidism produced a profound drop in tanycytes PPII mRNA levels, which was reverted by 3 days of treatment with T4. The activity of thyroliberinase, the serum isoform of PPII, was increased at most fasting time points studied. We conclude that delayed increases in both the ME PPII as well as the thyroliberinase activities in fasted male rats may facilitate the maintenance of the deep down-regulation of the HPT axis function, despite a partial reactivation of TRH expression in the PVN.


Asunto(s)
Aminopeptidasas/genética , Células Ependimogliales/enzimología , Ayuno/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Eminencia Media/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , ARN Mensajero/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Adrenalectomía , Aminopeptidasas/efectos de los fármacos , Aminopeptidasas/metabolismo , Animales , Antitiroideos/farmacología , Corticosterona/farmacología , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotiroidismo , Yoduro Peroxidasa/genética , Masculino , Metimazol/farmacología , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Precursores de Proteínas/genética , Ácido Pirrolidona Carboxílico/metabolismo , ARN Mensajero/efectos de los fármacos , Ratas , Hormona Liberadora de Tirotropina/efectos de los fármacos , Hormona Liberadora de Tirotropina/genética , Tiroxina/farmacología , Yodotironina Deyodinasa Tipo II
10.
Brain Res ; 1571: 1-11, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24842001

RESUMEN

Thyrotropin releasing hormone (TRH) is a neuropeptide with a wide neural distribution and a variety of functions. It modulates neuronal electrophysiological properties, including resting membrane potential, as well as excitatory postsynaptic potential and spike frequencies. We explored, with whole-cell patch clamp, TRH effect on action potential shape in pyramidal neurons of the sensorimotor cortex. TRH reduced spike and after hyperpolarization amplitudes, and increased spike half-width. The effect varied with dose, time and cortical layer. In layer V, 0.5µM of TRH induced a small increase in spike half-width, while 1 and 5µM induced a strong but transient change in spike half-width, and amplitude; after hyperpolarization amplitude was modified at 5µM of TRH. Cortical layers III and VI neurons responded intensely to 0.5µM TRH; layer II neurons response was small. The effect of 1µM TRH on action potential shape in layer V neurons was blocked by G-protein inhibition. Inhibition of the activity of the TRH-degrading enzyme pyroglutamyl peptidase II (PPII) reproduced the effect of TRH, with enhanced spike half-width. Many cortical PPII mRNA+ cells were VGLUT1 mRNA+, and some GAD mRNA+. These data show that TRH regulates action potential shape in pyramidal cortical neurons, and are consistent with the hypothesis that PPII controls its action in this region.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Corteza Sensoriomotora/citología , Hormona Liberadora de Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/farmacología , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Glutamato Descarboxilasa/genética , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacología , Técnicas In Vitro , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Tionucleótidos/farmacología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...