Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MethodsX ; 11: 102403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37854711

RESUMEN

Classically, the characterization of wastewater components has been restricted to the measurement of indirect parameters (chemical and biological oxygen demand, total nitrogen) and small molecules of interest in epidemiology or for environmental control. Despite the fact that metaproteomics has provided important knowledge about the microbial communities in these waters, practically nothing is known about other non-microbial proteins transported in the wastewater. The method described here has allowed us to perform a large-scale characterization of the wastewater proteome. Wastewater protein profiles have shown to be very different in different collection sites probably reflecting their human population and industrial activities. We believe that wastewater proteomics is opening the doors to the discovery of new environmental and health biomarkers and the development of new, more effective monitoring devices for issues like monitorization of population health, pest control, or control of industry discharges. The method developed is relatively simple and combines procedures for the separation of the soluble and particulate fractions of wastewater and their concentration, and conventional shotgun proteomics using high-resolution mass spectrometry for protein identification. •Unprecedented method for wastewater proteome characterization.•Proteins as new potential biomarkers for sewage chemical-information mining, wastewater epidemiology and environmental monitoring.•Wastewater protein profiles reflect human and industrial activities.

2.
Environ Sci Technol ; 57(30): 10929-10939, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37463250

RESUMEN

Wastewater-based epidemiology has been revealed as a powerful approach for surveying the health and lifestyle of a population. In this context, proteins have been proposed as potential biomarkers that complement the information provided by currently available methods. However, little is known about the range of molecular species and dynamics of proteins in wastewater and the information hidden in these protein profiles is still to be uncovered. In this study, we investigated the protein composition of wastewater from 10 municipalities in Catalonia with diverse populations and industrial activities at three different times of the year. The soluble fraction of this material was analyzed using liquid chromatography high-resolution tandem mass spectrometry using a shotgun proteomics approach. The complete proteomic profile, distribution among different organisms, and semiquantitative analysis of the main constituents are described. Excreta (urine and feces) from humans, and blood and other residues from livestock were identified as the two main protein sources. Our findings provide new insights into the characterization of wastewater proteomics that allow for the proposal of specific bioindicators for wastewater-based environmental monitoring. This includes human and animal population monitoring, most notably for rodent pest control (immunoglobulins (Igs) and amylases) and livestock processing industry monitoring (albumins).


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Animales , Humanos , Aguas del Alcantarillado/química , Proteómica , Cromatografía Liquida/métodos , Biomarcadores
3.
Respir Res ; 24(1): 80, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922832

RESUMEN

BACKGROUND: Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations. METHODS: Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.g., hyperoxia, LPS-induced inflammation). First, we characterized the rabbit's normal lung development along the distinct stages (i.e., pseudoglandular, canalicular, saccular, and alveolar phases) using histological, transcriptomic and proteomic analyses. Then, the impact of premature birth was investigated, comparing the sequential transcriptomic profiles of preterm rabbits obtained at different time intervals during their first week of postnatal life with those from age-matched term pups. RESULTS: Histological findings showed stage-specific morphological features of the developing rabbit's lung and validated the selected time intervals for the transcriptomic profiling. Cell cycle and embryo development, oxidative phosphorylation, and WNT signaling, among others, showed high gene expression in the pseudoglandular phase. Autophagy, epithelial morphogenesis, response to transforming growth factor ß, angiogenesis, epithelium/endothelial cells development, and epithelium/endothelial cells migration pathways appeared upregulated from the 28th day of gestation (early saccular phase), which represents the starting point of the premature rabbit model. Premature birth caused a significant dysregulation of the inflammatory response. TNF-responsive, NF-κB regulated genes were significantly upregulated at premature delivery and triggered downstream inflammatory pathways such as leukocyte activation and cytokine signaling, which persisted upregulated during the first week of life. Preterm birth also dysregulated relevant pathways for normal lung development, such as blood vessel morphogenesis and epithelial-mesenchymal transition. CONCLUSION: These findings establish the 28-day gestation premature rabbit as a suitable model for mechanistic and pharmacological studies in the context of BPD.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Nacimiento Prematuro , Animales , Embarazo , Femenino , Conejos , Recién Nacido , Humanos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Nacimiento Prematuro/metabolismo , Hiperoxia/metabolismo , Transcriptoma , Células Endoteliales/metabolismo , Proteómica , Animales Recién Nacidos , Pulmón/metabolismo , Inflamación/metabolismo
4.
Sci Rep ; 12(1): 640, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022497

RESUMEN

COVID-19 pathophysiology is currently not fully understood, reliable prognostic factors remain elusive, and few specific therapeutic strategies have been proposed. In this scenario, availability of biomarkers is a priority. MS-based Proteomics techniques were used to profile the proteome of 81 plasma samples extracted in four consecutive days from 23 hospitalized COVID-19 associated pneumonia patients. Samples from 10 subjects that reached a critical condition during their hospital stay and 10 matched non-severe controls were drawn before the administration of any COVID-19 specific treatment and used to identify potential biomarkers of COVID-19 prognosis. Additionally, we compared the proteome of five patients before and after glucocorticoids and tocilizumab treatment, to assess the changes induced by the therapy on our selected candidates. Forty-two proteins were differentially expressed between patients' evolution groups at 10% FDR. Twelve proteins showed lower levels in critical patients (fold-changes 1.20-3.58), of which OAS3 and COG5 found their expression increased after COVID-19 specific therapy. Most of the 30 proteins over-expressed in critical patients (fold-changes 1.17-4.43) were linked to inflammation, coagulation, lipids metabolism, complement or immunoglobulins, and a third of them decreased their expression after treatment. We propose a set of candidate proteins for biomarkers of COVID-19 prognosis at the time of hospital admission. The study design employed is distinctive from previous works and aimed to optimize the chances of the candidates to be validated in confirmatory studies and, eventually, to play a useful role in the clinical practice.


Asunto(s)
Proteínas Sanguíneas , COVID-19/sangre , COVID-19/diagnóstico , Hospitalización , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Estudios Prospectivos , Proteoma
5.
Methods Mol Biol ; 2044: 193-219, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31432414

RESUMEN

Cerebrospinal fluid (CSF) is the fluid of choice to study pathologies and disorders of the central nervous system (CNS). Its composition, especially its proteins and peptides, holds the promise that it may reflect the pathological state of an individual. Traditionally, proteins and peptides in CSF have been analyzed using bottom-up proteomics technologies in the search of high proteome coverage. However, the limited protein sequence coverage of this technology means that information regarding post-translational modifications (PTMs) and alternative splice variants is lost. As an alternative technology, top-down proteomics offers low to medium proteome coverage, but high protein coverage enabling almost a full characterization of the proteins' primary structure. This allows us to precisely identify distinct molecular forms of proteins (proteoforms) as well as naturally occurring bioactive peptide fragments, which could be of critical biological relevance and would otherwise remain undetected with a classical proteomics approach.Here, we describe various strategies including sample preparation protocols, off-line intact protein prefractionation, and LC-MS/MS methods together with data analysis pipelines to analyze cerebrospinal fluid (CSF) by top-down proteomics. However, there is not a unique or standardized method and the selection of the top-down strategy will depend on the exact goal of the study. Here, we describe various top-down proteomics methods that enable rapid protein characterization and may be an excellent companion analytical workflow in the search for new protein biomarkers in neurodegenerative diseases.


Asunto(s)
Proteínas del Líquido Cefalorraquídeo/análisis , Proteoma/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Biomarcadores/metabolismo , Proteínas del Líquido Cefalorraquídeo/química , Proteínas del Líquido Cefalorraquídeo/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía Liquida/métodos , Humanos , Fragmentos de Péptidos/química , Péptidos/líquido cefalorraquídeo , Péptidos/química , Procesamiento Proteico-Postraduccional , Proteoma/química , Programas Informáticos , Flujo de Trabajo
6.
BMB Rep ; 51(11): 563-571, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30158023

RESUMEN

Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones. [BMB Reports 2018; 51(11): 563-571].


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , MicroARNs/genética , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...