Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Res ; 234: 116564, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422117

RESUMEN

Volatile methylsiloxanes (VMSs) are a group of additives employed in different consumer products that can affect the quality of the biogas produced in wastewater treatment plants (WWTPs). The main objective of this study is to understand the fate of different VMSs along the treatment process of a WWTP located in Aveiro (Portugal). Thus, wastewater, sludge, biogas, and air were sampled in different units for two weeks. Subsequently, these samples were extracted and analyzed by different environment-friendly protocols to obtain their VMS (L3-L5, D3-D6) concentrations and profiles. Finally, considering the different matrix flows at every sampling moment, the mass distribution of VMSs within the plant was estimated. The levels of ∑VMSs were similar to those showed in the literature (0.1-50 µg/L in entry wastewater and 1-100 µg/g dw in primary sludge). However, the entry wastewater profile showed higher variability in D3 concentrations (from non detected to 49 µg/L) than found in previous studies (0.10-1.00 µg/L), likely caused by isolated releases of this compound that could be related to industrial sources. Outdoor air samples showed a prevalence of D5, while indoor air locations were characterized by a predominance of D3 and D4. Differences in sources and the presence of an indoor air filtration system may explain this divergence. Biogas was characterized by ∑VMSs concentrations (8.00 ± 0.22 mg/m3) above the limits recommended by some engine manufacturers and mainly composed of D5 (89%). Overall, 81% of the total incoming mass of VMSs is reduced along the WWTP, being the primary decanter and the secondary treatment responsible for the highest decrease (30.6% and 29.4% of the initial mass, respectively). This reduction, however, is congener dependant. The present study demonstrates the importance of extending sampling periods and matrices (i.e., sludge and air) to improve sample representativity, time-sensitivity, and the accuracy of mass balance exercises.


Asunto(s)
Aguas Residuales , Purificación del Agua , Aguas del Alcantarillado , Biocombustibles , Siloxanos/análisis , Monitoreo del Ambiente
2.
Environ Pollut ; 315: 120423, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243192

RESUMEN

In the present study, indoor and outdoor environments of a wastewater treatment plant (WWTP) were monitored by passive air samplers to assess the presence and seasonal trends of three linear (L3-L5) and four cyclic (D3-D6) volatile methylsiloxanes (VMSs). Furthermore, passive sampling rates (PSRs) were estimated from literature values to calculate VMSs air concentrations and occupational exposure to potentially toxic (D4-D6) congeners. Results showed a seasonal pattern of VMSs in outdoor locations (especially in the aeration tank and preliminary treatment), being the highest levels of total VMSs reached in Summer and the lowest in Spring, caused by the confluence of changing weather conditions and VMSs consumption patterns. This seasonality was not found in indoor sites. The congener profiles of VMSs were consistent throughout the year, showing a prevalence of D5 outdoors, and of D3 and D4 in strictly indoor environments. Different sources of VMSs, together with an air filtering system installed in the sampled buildings explain these differences. Estimated PSRs yielded lower values indoors (0.16-0.21 m3/day) than outdoors (0.32-0.49 m3/day), due to different wind speeds. Overall, outdoor locations showed higher VMSs concentrations in air than indoors. However, the values detected in both environments (∑VMSs between 8.00 and 2000 ng/m3) were within the ranges described in the literature for these locations. The occupational exposure to D4-D6 estimated for three different activities in the WWTP showed the highest values for Maintenance Technicians (8010 ± 722 ng/(kg·year)) and the lowest for Laboratory Technicians (5410 ± 874 ng/(kg·year)), in direct correlation with the higher amount of time spent outdoors by the former. In any case, the exposure was below the inhalation threshold of 150 µg/(kg·day) proposed as safe by other authors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Exposición Profesional , Purificación del Agua , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Siloxanos/análisis , Estaciones del Año , Contaminación del Aire Interior/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-35270319

RESUMEN

Microalgae are widely used in the bioremediation of wastewaters due to their efficient removal of pollutants such as nitrogen, phosphorus, and contaminants of emerging concern (CECs). Siloxanes are CECs that reach wastewater treatment plants (WWTPs), leading to the production of biogas enriched with these compounds, associated with the breakdown of cogeneration equipment. The biological removal of siloxanes from wastewaters could be a sustainable alternative to the costly existing technologies, but no investigation has been performed using microalgal cultures for this purpose. This study evaluated the ability of Chlorella vulgaris to bioremediate primary (PE) and secondary (SE) urban effluents and remove volatile methylsiloxanes (VMSs). C. vulgaris grew successfully in both effluents, and approximately 86% of nitrogen and 80% of phosphorus were efficiently removed from the PE, while 52% of nitrogen and 87% of phosphorus were removed from the SE, and the presence of VMSs does not seem to have a negative influence on nutrient removal. Three out of the seven of the analysed VMSs were detected in the microalgal biomass at the end of the PE assay. However, dodecamethylcyclohexasiloxane (D6) was the one that accumulated to a greater extent, since 48% of the initial mass of D6 was detected in the biomass samples. D6 is one of the most lipophilic VMSs, which might contribute to the higher adsorption onto the surface of microalgae. Overall, the results indicate C. vulgaris' potential to remove specific VMSs from effluents.


Asunto(s)
Chlorella vulgaris , Microalgas , Biodegradación Ambiental , Biomasa , Nitrógeno/análisis , Fósforo , Siloxanos/análisis , Aguas Residuales/análisis
4.
Chemosphere ; 252: 126454, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32197174

RESUMEN

We present a model to predict the long-term distribution and concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in estuaries comprising multiple intercommunicated sub-embayments. To that end, a mass balance model including rate constants and time-varying water inputs was designed to calculate levels of these compounds in water and sediment for every sub-embayment. Subsequently, outflows and tidal water exchanges were used to interconnect the different regions of the estuary. To calculate plausible risks to population, outputs of the model were used as inputs in a previously designed model to simulate concentrations of PFOA and PFOS in a sport fish species (Cymatogaster aggregata). The performance of the model was evaluated by applying it to the specific case of San Francisco Bay, (California, USA), using 2009 sediment and water sampled concentrations of PFOA and PFOS in North, Central and South regions. Concentrations of these compounds in the Bay displayed exponential decreasing trends, but with different shapes depending on region, compound, and compartment assessed. Nearly stable PFOA concentrations were reached after 50 years, while PFOS needed close to 500 years to stabilize in sediment and fish. Afterwards, concentrations stabilize between 4 and 23 pg/g in sediment, between 0.02 and 44 pg/L in water, and between 7 and 104 pg/g wet weight in fish, depending on compound and region. South Bay had the greatest final concentrations of pollutants, regardless of compartment. Fish consumption is safe for most scenarios, but due to model uncertainty, limitations in monthly intake could be established for North and South Bay catches.


Asunto(s)
Ácidos Alcanesulfónicos/análisis , Caprilatos/análisis , Fluorocarburos/análisis , Modelos Químicos , Contaminantes Químicos del Agua/análisis , Animales , Bahías , Monitoreo del Ambiente , Contaminantes Ambientales , Peces , San Francisco , Agua
5.
Environ Res ; 175: 287-296, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31146100

RESUMEN

Inhalation of particulate matter (PM) has been linked to serious adverse health effects, such as asthma, cardiovascular diseases and lung cancer. In the present study, coarse (PM10-2.5), accumulation mode (PM2.5-0.25), and quasi-ultrafine (PM0.25) particulates were collected inside twelve educative centers of Tarragona County (Catalonia, Spain) during two seasons (cold and warm). Chemical characterization of PM, as well as risk assessment were subsequently conducted in order to evaluate respiratory and digestive risks during school time for children. Levels and chemical composition of PM were very different among the 12 centers. Average PM levels were higher during the cold season, as well as the concentrations of most toxic metals. In most schools, PM levels were below the daily PM10 threshold established in the regulation (50 µg/m3), with the exception of school number 1 during the cold season. On average, and regardless of season, coarse PM was highly influenced by mineral matter, while organic matter and elemental carbon were prevalent in quasi-ultrafine PM. The concentrations of the toxic elements considered by the legislation (As, Cd, Pb, and Ni) were below their correspondent regulatory annual limits. Calculated risks were below the safety thresholds, being fine fractions (PM2.5-0.25 and PM0.25) the main contributors to both digestive and respiratory risks.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales/análisis , Material Particulado , Niño , Exposición a Riesgos Ambientales/estadística & datos numéricos , Monitoreo del Ambiente , Humanos , Tamaño de la Partícula , Medición de Riesgo , Instituciones Académicas/estadística & datos numéricos , Estaciones del Año , España
6.
Environ Res ; 167: 191-197, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30032002

RESUMEN

In 2009, a cement plant located in Alcanar (South Catalonia, Spain) started co-processing a special kind of refuse-derived fuel (RDF) called ENERFUEL™. In April 2014 and 2017, 5 and 8 years after RDF co-processing, the concentrations of metals and metalloids (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V and Zn) and PCDD/Fs were measured in samples of soils, herbage and air collected in the vicinity of the facility. The comparison of the current concentrations with those obtained in a baseline study (2008), when fossil fuels were used solely, has shown that the environmental concentrations of metals, metalloids and PCDD/Fs were not significantly modified. The concentrations of metals, metalloids and PCDD/Fs in soil, vegetation and air of Alcanar are in the low part of the ranges found around other cement plants in Catalonia (in general, below 50th percentile). Non-carcinogenic risks due to exposure to metals, metalloids and PCDD/Fs were lower than the safety value (HQ<1). In turn, carcinogenic risks were below the 10-5 Spanish threshold. The present results corroborate that, from an environmental point of view, the use of wastes as alternative fuels (AF) in a cement plant, which is operating with suitable technical conditions, is a good option for waste management. It contributes towards overcoming challenges such as climate change and fossil fuel depletion, while utilizing principles of circular economy.


Asunto(s)
Benzofuranos , Contaminantes Ambientales , Contaminación Ambiental , Instalaciones Industriales y de Fabricación , Metaloides , Metales , Dibenzodioxinas Policloradas , Benzofuranos/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Contaminación Ambiental/análisis , Combustibles Fósiles , Humanos , Metaloides/análisis , Metales/análisis , Dibenzodioxinas Policloradas/análisis , Contaminantes del Suelo , España , Administración de Residuos/métodos
7.
Chemosphere ; 209: 137-146, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29929119

RESUMEN

In this pilot study three fractions of particulate matter (PM0.25, PM2.5-0.25, and PM10-2.5) were collected in three environments (classroom, home, and outdoors) in a village located nearby an industrial complex. Time-activity pattern of 20 students attending the classroom was obtained, and the dose of particles reaching the children's lungs under actual environmental conditions (i.e. real dose) was calculated via dosimetry model. The highest PM concentrations were reached in the classroom. Simulations showed that heavy intensity outdoor activities played a major role in PM deposition, especially in the upper part of the respiratory tract. The mass of PM10-2.5 reaching the alveoli was minor, while PM2.5-0.25 and PM0.25 apportion for most of the PM mass retained in the lungs. Consequently, PM2.5-0.25 and PM0.25 were the only fractions used in two subsequent toxicity assays onto alveolar cells (A549). First, a cytotoxicity dose-response assay was performed, and doses corresponding to 5% mortality (LC5) were estimated. Afterwards, two LC-MS metabolomic assays were conducted: one applying LC5, and another applying real dose. A lower estimated LC5 value was obtained for PM0.25 than PM2.5-0.25 (8.08 and 73.7 ng/mL respectively). The number of altered features after LC5 exposure was similar for both fractions (39 and 38 for PM0.25 and PM2.5-0.25 respectively), while after real dose exposure these numbers differed (10 and 5 for PM0.25 and PM2.5-0.25 respectively). The most metabolic changes were related to membrane and lung surfactant lipids. This study highlights the capacity of PM to alter metabolic profile of lung cells at conventional environmental levels.


Asunto(s)
Monitoreo del Ambiente , Metabolómica , Material Particulado/toxicidad , Contaminación del Aire Interior/análisis , Niño , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Tamaño de la Partícula , Material Particulado/análisis , Proyectos Piloto , Sistema Respiratorio/efectos de los fármacos
8.
Environ Sci Process Impacts ; 19(7): 917-927, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28561821

RESUMEN

This study aimed at evaluating the potential impact of a cement plant after 4 years of the employment of alternative fuel. In June 2015, concentrations of PCDD/Fs and metals were determined in soils, vegetation and air in order to measure potential changes with respect to previous surveys before (July 2011) and after (June 2013) the employment of alternative fuel. Risks to human health were also assessed. In soils, metal levels were similar to those observed in June 2013 (p > 0.05). In comparison with July 2011, the increment was only statistically significant for As and Cd (p < 0.05). A notable increase in levels of PCDD/Fs was noted when current levels in soils (1.14 ng WHO-TEQ per kg) were compared with those observed in July 2011 (0.37 ng WHO-TEQ per kg) (p > 0.05) and June 2013 (0.41 ng WHO-TEQ per kg) (p < 0.05). This increase was mainly caused by the increase in PCDD/F levels at one sampling site, which showed the heterogeneity of PCDD/F levels in soils, possibly as a result of different point emissions over the years. On the other hand, temporal trends in levels of metals and PCDD/Fs in vegetation showed a clear decrease, which indicated that the particle fraction of these pollutants would potentially be removed from leaf surfaces by wash-off. In air, levels were similar to those found in previous surveys. The results of PCA showed that the change in fuel had not affected the environmental profiles of metals and PCDD/Fs around the cement plant. The exposure of the population living in the surroundings of the plant was measured and it was shown that diet was the major contributor for both metals and PCDD/Fs, with percentages of over 97%, the only exceptions being As and Pb, for which dietary intake accounted for 43% and 71% of the total exposure, respectively. Environmental non-cancer and cancer risks were within the limits considered as acceptable by international standards.


Asunto(s)
Dibenzofuranos Policlorados/análisis , Fuentes Generadoras de Energía , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Metales Pesados/análisis , Dibenzodioxinas Policloradas/análisis , Contaminantes Atmosféricos/análisis , Industria Química , Humanos , Plantas/química , Medición de Riesgo , Aguas del Alcantarillado/química , Contaminantes del Suelo/análisis , España
9.
Sci Total Environ ; 550: 1057-1064, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26859698

RESUMEN

The distributions of polycyclic aromatic hydrocarbons (PAHs) and molecular tracer organic compounds for biomass combustion, traffic emissions, soil dust, and secondary aerosol processing have been studied in three fractions of ambient air particulate matter (PM10, 2.5, and 1) collected in the vicinity of a cement plant. PAH concentrations were used to estimate the carcinogenic risks in humans. Combustion related compounds, including PAHs, and those from secondary aerosol processing, predominated in the finest (PM<1) fraction, while saccharides related to organic soil dust predominated in the coarse fraction (2.5

Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Aerosoles , Biocombustibles , Industria de la Construcción
10.
Environ Res ; 143(Pt A): 10-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26408807

RESUMEN

In this paper we studied the exposure to three size fractions of outdoor particulate matter (PM10, PM2.5, and PM1) collected in an area influenced by a cement plant. For that purpose, three groups of population were evaluated (children, adults and retired) in two seasons (summer and winter). Outdoor measured PM concentrations, as well as physiological parameters and activity patterns of the three groups of population were used as input data in two different models. The first one was an indoor air quality model, used to elucidate indoor PM concentrations in different microenvironments. The second one was a dosimetry model, used to evaluate the internal exposure and the distribution of the different PM fractions in the respiratory tract. Results from the indoor air quality model showed that special attention must be paid to the finest particles, since they penetrate indoors in a greater degree. Highest pulmonary doses for the three PM sizes were reported for retired people, being this a result of the high amount of time in outdoor environments exercising lightly. For children, the exposure was mainly influenced by the time they also spend outdoors, but in this case due to heavy intensity activities. It was noticed that deposition of fine particles was more significant in the pulmonary regions of children and retired people in comparison with adults, which has implications in the expected adverse health effects for those vulnerable groups of population.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Exposición por Inhalación/análisis , Modelos Biológicos , Material Particulado/análisis , Sistema Respiratorio/metabolismo , Anciano , Contaminantes Atmosféricos/farmacocinética , Niño , Materiales de Construcción , Humanos , Industrias , Persona de Mediana Edad , Tamaño de la Partícula , Material Particulado/farmacocinética , España , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...