Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114091, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607914

RESUMEN

Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.


Asunto(s)
Proteínas de Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Ácidos Grasos , Peroxirredoxinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos , Óxido Nítrico/metabolismo , Peroxirredoxinas/metabolismo , Procesamiento Proteico-Postraduccional , Semillas/metabolismo
2.
Front Plant Sci ; 14: 1158184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063215

RESUMEN

Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.

3.
J Exp Bot ; 74(19): 6104-6118, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36548145

RESUMEN

Plant root growth and developmental capacities reside in a few stem cells of the root apical meristem (RAM). Maintenance of these stem cells requires regenerative divisions of the initial stem cell niche (SCN) cells, self-maintenance, and proliferative divisions of the daughter cells. This ensures sufficient cell diversity to guarantee the development of complex root tissues in the plant. Damage in the root during growth involves the formation of a new post-embryonic root, a process known as regeneration. Post-embryonic root development and organogenesis processes include primary root development and SCN maintenance, plant regeneration, and the development of adventitious and lateral roots. These developmental processes require a fine-tuned balance between cell proliferation and maintenance. An important regulator during root development and regeneration is the gasotransmitter nitric oxide (NO). In this review we have sought to compile how NO regulates cell rate proliferation, cell differentiation, and quiescence of SCNs, usually through interaction with phytohormones, or other molecular mechanisms involved in cellular redox homeostasis. NO exerts a role on molecular components of the auxin and cytokinin signaling pathways in primary roots that affects cell proliferation and maintenance of the RAM. During root regeneration, a peak of auxin and cytokinin triggers specific molecular programs. Moreover, NO participates in adventitious root formation through its interaction with players of the brassinosteroid and cytokinin signaling cascade. Lately, NO has been implicated in root regeneration under hypoxia conditions by regulating stem cell specification through phytoglobins.


Asunto(s)
Proteínas de Arabidopsis , Raíces de Plantas , Raíces de Plantas/metabolismo , Óxido Nítrico/metabolismo , Meristema , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo
4.
Front Plant Sci ; 13: 1049323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570960

RESUMEN

High seed quality is key to agricultural production, which is increasingly affected by climate change. We studied the effects of drought and elevated temperature during seed production on key seed quality traits of two genotypes of malting barley (Hordeum sativum L.). Plants of a "Hana-type" landrace (B1) were taller, flowered earlier and produced heavier, larger and more vigorous seeds that resisted ageing longer compared to a semi-dwarf breeding line (B2). Accordingly, a NAC domain-containing transcription factor (TF) associated with rapid response to environmental stimuli, and the TF ABI5, a key regulator of seed dormancy and vigour, were more abundant in B1 seeds. Drought significantly reduced seed yield in both genotypes, and elevated temperature reduced seed size. Genotype B2 showed partial thermodormancy that was alleviated by drought and elevated temperature. Metabolite profiling revealed clear differences between the embryos of B1 and B2. Drought, but not elevated temperature, affected the metabolism of amino acids, organic acids, osmolytes and nitrogen assimilation, in the seeds of both genotypes. Our study may support future breeding efforts to produce new lodging and drought resistant malting barleys without trade-offs that can occur in semi-dwarf varieties such as lower stress resistance and higher dormancy.

5.
Front Plant Sci ; 12: 630792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122465

RESUMEN

Hormone patterns tailor cell fate decisions during plant organ formation. Among them, auxins and cytokinins are critical phytohormones during early development. Nitric oxide (NO) modulates root architecture by the control of auxin spatial patterns. However, NO involvement during the coordination of shoot organogenesis remains unclear. Here, we explore the effect of NO during shoot development by using a phenotypic, cellular, and genetic analysis in Arabidopsis thaliana and get new insights into the characterization of NO-mediated leaf-related phenotypes. NO homeostasis mutants are impaired in several shoot architectural parameters, including phyllotactic patterns, inflorescence stem elongation, silique production, leaf number, and margin. Auxin distribution is a key feature for tissue differentiation and need to be controlled at different levels (i.e., synthesis, transport, and degradation mechanisms). The phenotypes resulting from the introduction of the cue1 mutation in the axr1 auxin resistant and pin1 backgrounds exacerbate the relationship between NO and auxins. Using the auxin reporter DR5:GUS, we observed an increase in auxin maxima under NO-deficient mutant backgrounds and NO scavenging, pointing to NO-ASSOCIATED 1 (NOA1) as the main player related to NO production in this process. Furthermore, polar auxin transport is mainly regulated by PIN-FORMED 1 (PIN1), which controls the flow along leaf margin and venations. Analysis of PIN1 protein levels shows that NO controls its accumulation during leaf development, impacting the auxin mediated mechanism of leaf building. With these findings, we also provide evidence for the NO opposite effects to determine root and shoot architecture, in terms of PIN1 accumulation under NO overproduction.

6.
Cell Rep ; 35(11): 109263, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133931

RESUMEN

The interplay between the phytohormone abscisic acid (ABA) and the gasotransmitter nitric oxide (NO) regulates seed germination and post-germinative seedling growth. We show that GAP1 (germination in ABA and cPTIO 1) encodes the transcription factor ANAC089 with a critical membrane-bound domain and extranuclear localization. ANAC089 mutants lacking the membrane-tethered domain display insensitivity to ABA, salt, and osmotic and cold stresses, revealing a repressor function. Whole-genome transcriptional profiling and DNA-binding specificity reveals that ANAC089 regulates ABA- and redox-related genes. ANAC089 truncated mutants exhibit higher NO and lower ROS and ABA endogenous levels, alongside an altered thiol and disulfide homeostasis. Consistently, translocation of ANAC089 to the nucleus is directed by changes in cellular redox status after treatments with NO scavengers and redox-related compounds. Our results reveal ANAC089 to be a master regulator modulating redox homeostasis and NO levels, able to repress ABA synthesis and signaling during Arabidopsis seed germination and abiotic stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retroalimentación Fisiológica , Germinación , Semillas , Transducción de Señal , Estrés Fisiológico , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Disulfuros/metabolismo , ADN de Plantas/metabolismo , Regulación hacia Abajo/genética , Mutación con Ganancia de Función/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Óxido Nítrico/metabolismo , Oxidación-Reducción , Unión Proteica , Semillas/genética , Semillas/crecimiento & desarrollo , Fracciones Subcelulares/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genética
8.
J Exp Bot ; 72(3): 904-916, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32976588

RESUMEN

Plants are aerobic organisms that have evolved to maintain specific requirements for oxygen (O2), leading to a correct respiratory energy supply during growth and development. There are certain plant developmental cues and biotic or abiotic stress responses where O2 is scarce. This O2 deprivation known as hypoxia may occur in hypoxic niches of plant-specific tissues and during adverse environmental cues such as pathogen attack and flooding. In general, plants respond to hypoxia through a complex reprogramming of their molecular activities with the aim of reducing the impact of stress on their physiological and cellular homeostasis. This review focuses on the fine-tuned regulation of hypoxia triggered by a network of gaseous compounds that includes O2, ethylene, and nitric oxide. In view of recent scientific advances, we summarize the molecular mechanisms mediated by phytoglobins and by the N-degron proteolytic pathway, focusing on embryogenesis, seed imbibition, and germination, and also specific structures, most notably root apical and shoot apical meristems. In addition, those biotic and abiotic stresses that comprise hypoxia are also highlighted.


Asunto(s)
Óxido Nítrico , Oxígeno , Meristema , Desarrollo de la Planta , Plantas , Estrés Fisiológico
9.
Plants (Basel) ; 9(11)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158046

RESUMEN

The cue1 nitric oxide (NO) overproducer mutants are impaired in a plastid phosphoenolpyruvate/phosphate translocator, mainly expressed in Arabidopsis thaliana roots. cue1 mutants present an increased content of arginine, a precursor of NO in oxidative synthesis processes. However, the pathways of plant NO biosynthesis and signaling have not yet been fully characterized, and the role of CUE1 in these processes is not clear. Here, in an attempt to advance our knowledge regarding NO homeostasis, we performed a deep characterization of the NO production of four different cue1 alleles (cue1-1, cue1-5, cue1-6 and nox1) during seed germination, primary root elongation, and salt stress resistance. Furthermore, we analyzed the production of NO in different carbon sources to improve our understanding of the interplay between carbon metabolism and NO homeostasis. After in vivo NO imaging and spectrofluorometric quantification of the endogenous NO levels of cue1 mutants, we demonstrate that CUE1 does not directly contribute to the rapid NO synthesis during seed imbibition. Although cue1 mutants do not overproduce NO during germination and early plant development, they are able to accumulate NO after the seedling is completely established. Thus, CUE1 regulates NO homeostasis during post-germinative growth to modulate root development in response to carbon metabolism, as different sugars modify root elongation and meristem organization in cue1 mutants. Therefore, cue1 mutants are a useful tool to study the physiological effects of NO in post-germinative growth.

11.
J Exp Bot ; 70(17): 4441-4460, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31327004

RESUMEN

Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.


Asunto(s)
Ácido Abscísico/metabolismo , Óxido Nítrico/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Ácido Salicílico/metabolismo , Procesamiento Proteico-Postraduccional , Especies de Nitrógeno Reactivo/metabolismo , Estrés Fisiológico
12.
J Plant Physiol ; 216: 188-196, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28709027

RESUMEN

The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen (1O2) and activating 1O2-mediated cell death. Thylakoids of aba1 produced twice as much 1O2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. 1O2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of 1O2 generation in aba1. Up-regulation of the 1O2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct 1O2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of 1O2-mediated cell death. In conclusion, aba1 may serve as an alternative model to other 1O2-overproducing mutants of Arabidopsis for investigating 1O2-mediated cell death.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Cloroplastos/metabolismo , Luz , Mutación/genética , Oxidorreductasas/metabolismo , Oxígeno Singlete/metabolismo , Estrés Fisiológico/efectos de la radiación , Arabidopsis/efectos de la radiación , Muerte Celular/efectos de la radiación , Cloroplastos/efectos de la radiación , Oxígeno/metabolismo , Plantas Modificadas Genéticamente , Espectrometría de Fluorescencia
13.
Nat Commun ; 6: 8669, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26493030

RESUMEN

Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Germinación , Óxido Nítrico/metabolismo , Arabidopsis , Proteínas Cullin/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Procesamiento Proteico-Postraduccional , S-Nitrosoglutatión , Plantones/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/metabolismo
14.
J Exp Bot ; 66(10): 2857-68, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25954048

RESUMEN

During the past two decades, nitric oxide (NO) has evolved from a mere gaseous free radical to become a new messenger in plant biology with an important role in a plethora of physiological processes. This molecule is involved in the regulation of plant growth and development, pathogen defence and abiotic stress responses, and in most cases this is achieved through its interaction with phytohormones. Understanding the role of plant growth regulators is essential to elucidate how plants activate the appropriate set of responses to a particular developmental stage or a particular stress. The first task to achieve this goal is the identification of molecular targets, especially those involved in the regulation of the crosstalk. The nature of NO targets in these growth and development processes and stress responses remains poorly described. Currently, the molecular mechanisms underlying the effects of NO in these processes and their interaction with other plant hormones are beginning to unravel. In this review, we made a compilation of the described interactions between NO and phytohormones during early plant developmental processes (i.e. seed dormancy and germination, hypocotyl elongation and root development).


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Óxido Nítrico/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/genética , Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Receptor Cross-Talk
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...