Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37296872

RESUMEN

Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of pathogenic CD138+ plasma cells (PPCs) in bone marrow (BM). Recent years have seen a significant increase in the treatment options for MM; however, most patients who achieve complete the response ultimately relapse. The earlier detection of tumor-related clonal DNA would thus be very beneficial for patients with MM and would enable timely therapeutic interventions to improve outcomes. Liquid biopsy of "cell-free DNA" (cfDNA) as a minimally invasive approach might be more effective than BM aspiration not only for the diagnosis but also for the detection of early recurrence. Most studies thus far have addressed the comparative quantification of patient-specific biomarkers in cfDNA with PPCs and BM samples, which have shown good correlations. However, there are limitations to this approach, such as the difficulty in obtaining enough circulating free tumor DNA to achieve sufficient sensitivity for the assessment of minimal residual disease. Herein, we summarize current data on methodologies to characterize MM, and we present evidence that targeted capture hybridization DNA sequencing (tchDNA-Seq) can provide robust biomarkers in cfDNA, including immunoglobulin (IG) rearrangements. We also show that detection can be improved by prior purification of the cfDNA. Overall, liquid biopsies of cfDNA to monitor IG rearrangements have the potential to provide important diagnostic, prognostic, and predictive information in patients with MM.

2.
Cancers (Basel) ; 14(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291952

RESUMEN

Next-generation sequencing (NGS) has greatly improved our ability to detect the genomic aberrations occurring in multiple myeloma (MM); however, its transfer to routine clinical labs and its validation in clinical trials remains to be established. We designed a capture-based NGS targeted panel to identify, in a single assay, known genetic alterations for the prognostic stratification of MM. The NGS panel was designed for the simultaneous study of single nucleotide and copy number variations, insertions and deletions, chromosomal translocations and V(D)J rearrangements. The panel was validated using a cohort of 149 MM patients enrolled in the GEM2012MENOS65 clinical trial. The results showed great global accuracy, with positive and negative predictive values close to 90% when compared with available data from fluorescence in situ hybridization and whole-exome sequencing. While the treatments used in the clinical trial showed high efficacy, patients defined as high-risk by the panel had shorter progression-free survival (p = 0.0015). As expected, the mutational status of TP53 was significant in predicting patient outcomes (p = 0.021). The NGS panel also efficiently detected clonal IGH rearrangements in 81% of patients. In conclusion, molecular karyotyping using a targeted NGS panel can identify relevant prognostic chromosomal abnormalities and translocations for the clinical management of MM patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...