Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Psychiatry ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38332374

RESUMEN

Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.

2.
Sci Rep ; 14(1): 1084, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212349

RESUMEN

Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/psicología , Benchmarking , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos
3.
Sci Rep ; 14(1): 344, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172509

RESUMEN

Major depressive disorder (MDD) is a devastating and heterogenous disorder for which there are no approved biomarkers in clinical practice. We recently identified anticipatory hypo-arousal indexed by pupil responses as a candidate mechanism subserving depression symptomatology. Here, we conducted a replication and extension study of these findings. We analyzed a replication sample of 40 unmedicated patients with a diagnosis of depression and 30 healthy control participants, who performed a reward anticipation task while pupil responses were measured. Using a Bayesian modelling approach taking measurement uncertainty into account, we could show that the negative correlation between pupil dilation and symptom load during reward anticipation is replicable within MDD patients, albeit with a lower effect size. Furthermore, with the combined sample of 136 participants (81 unmedicated depressed and 55 healthy control participants), we further showed that reduced pupil dilation in anticipation of reward is inversely associated with anhedonia items of the Beck Depression Inventory in particular. Moreover, using simultaneous fMRI, particularly the right anterior insula as part of the salience network was negatively correlated with depressive symptom load in general and anhedonia items specifically. The present study supports the utility of pupillometry in assessing noradrenergically mediated hypo-arousal during reward anticipation in MDD, a physiological process that appears to subserve anhedonia.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Anhedonia/fisiología , Teorema de Bayes , Recompensa , Escalas de Valoración Psiquiátrica , Imagen por Resonancia Magnética
4.
Commun Biol ; 6(1): 1031, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821711

RESUMEN

Overweight and obesity are associated with altered stress reactivity and increased inflammation. However, it is not known whether stress-induced changes in brain function scale with BMI and if such associations are driven by peripheral cytokines. Here, we investigate multimodal stress responses in a large transdiagnostic sample using predictive modeling based on spatio-temporal profiles of stress-induced changes in activation and functional connectivity. BMI is associated with increased brain responses as well as greater negative affect after stress and individual response profiles are associated with BMI in females (pperm < 0.001), but not males. Although stress-induced changes reflecting BMI are associated with baseline cortisol, there is no robust association with peripheral cytokines. To conclude, alterations in body weight and energy metabolism might scale acute brain responses to stress more strongly in females compared to males, echoing observational studies. Our findings highlight sex-dependent associations of stress with differences in endocrine markers, largely independent of peripheral inflammation.


Asunto(s)
Encéfalo , Obesidad , Masculino , Humanos , Femenino , Índice de Masa Corporal , Encéfalo/diagnóstico por imagen , Inflamación , Citocinas
6.
Artículo en Inglés | MEDLINE | ID: mdl-37348604

RESUMEN

BACKGROUND: Neurocognitive functioning is a relevant transdiagnostic dimension in psychiatry. As pupil size dynamics track cognitive load during a working memory task, we aimed to explore if this parameter allows identification of psychophysiological subtypes in healthy participants and patients with affective and anxiety disorders. METHODS: Our sample consisted of 226 participants who completed the n-back task during simultaneous functional magnetic resonance imaging and pupillometry measurements. We used latent class growth modeling to identify clusters based on pupil size in response to cognitive load. In a second step, these clusters were compared on affective and anxiety symptom levels, performance in neurocognitive tests, and functional magnetic resonance imaging activity. RESULTS: The clustering analysis resulted in two distinct pupil response profiles: one with a stepwise increasing pupil size with increasing cognitive load (reactive group) and one with a constant pupil size across conditions (nonreactive group). A larger increase in pupil size was significantly associated with better performance in neurocognitive tests in executive functioning and sustained attention. Statistical maps of parametric modulation of pupil size during the n-back task showed the frontoparietal network in the positive contrast and the default mode network in the negative contrast. The pupil response profile of the reactive group was associated with more thalamic activity, likely reflecting better arousal upregulation and less deactivation of the limbic system. CONCLUSIONS: Pupil measurements have the potential to serve as a highly sensitive psychophysiological readout for detection of neurocognitive deficits in the core domain of executive functioning, adding to the development of valid transdiagnostic constructs in psychiatry.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35577304

RESUMEN

BACKGROUND: Fear-related disorders are characterized by hyperexcitability in reflexive circuits and maladaptive associative learning mechanisms. The startle reflex is suited to investigate both processes, either by probing it under baseline conditions or by deriving it in fear conditioning studies. In anxiety research, the amplitude of the fear-potentiated startle has been shown to be influenced by amygdalar circuits and has typically been the readout of interest. In schizophrenia research, prolonged startle peak latency under neutral conditions is an established readout, thought to reflect impaired processing speed. We therefore explored whether startle latency is an informative readout for human anxiety research. METHODS: We investigated potential similarities and differences of startle peak latency and amplitude derived from a classical fear conditioning task in a sample of 206 participants with varying severity levels of anxiety disorders and healthy control subjects. We first reduced startle response to stable components and regressed individual amygdala gray matter volumes onto the resulting startle measures. We then probed time, stimulus, and group effects of startle latency. RESULTS: We showed that startle latency and startle amplitude were 2 largely uncorrelated measures; startle latency, but not amplitude, showed a sex-specific association with gray matter volume of the amygdala; startle latencies showed a fear-dependent task modulation; and patients with fear-related disorders displayed shorter startle latencies throughout the fear learning task. CONCLUSIONS: These data provide support for the notion that probing startle latencies under threat may engage amygdala-modulated threat processing, making them a complementary marker for human anxiety research.


Asunto(s)
Amígdala del Cerebelo , Ansiedad , Masculino , Femenino , Humanos , Miedo/fisiología , Condicionamiento Clásico/fisiología , Nivel de Alerta
8.
Front Neurol ; 13: 923988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388214

RESUMEN

Site differences, or systematic differences in feature distributions across multiple data-acquisition sites, are a known source of heterogeneity that may adversely affect large-scale meta- and mega-analyses of independently collected neuroimaging data. They influence nearly all multi-site imaging modalities and biomarkers, and methods to compensate for them can improve reliability and generalizability in the analysis of genetics, omics, and clinical data. The origins of statistical site effects are complex and involve both technical differences (scanner vendor, head coil, acquisition parameters, imaging processing) and differences in sample characteristics (inclusion/exclusion criteria, sample size, ancestry) between sites. In an age of expanding international consortium research, there is a growing need to disentangle technical site effects from sample characteristics of interest. Numerous statistical and machine learning methods have been developed to control for, model, or attenuate site effects - yet to date, no comprehensive review has discussed the benefits and drawbacks of each for different use cases. Here, we provide an overview of the different existing statistical and machine learning methods developed to remove unwanted site effects from independently collected neuroimaging samples. We focus on linear mixed effect models, the ComBat technique and its variants, adjustments based on image quality metrics, normative modeling, and deep learning approaches such as generative adversarial networks. For each method, we outline the statistical foundation and summarize strengths and weaknesses, including their assumptions and conditions of use. We provide information on software availability and comment on the ease of use and the applicability of these methods to different types of data. We discuss validation and comparative reports, mention caveats and provide guidance on when to use each method, depending on context and specific research questions.

9.
Biol Psychiatry ; 92(2): 158-169, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35260225

RESUMEN

BACKGROUND: Maladaptive stress responses are important risk factors in the etiology of mood and anxiety disorders, but exact pathomechanisms remain to be understood. Mapping individual differences of acute stress-induced neurophysiological changes, especially on the level of neural activation and functional connectivity (FC), could provide important insights in how variation in the individual stress response is linked to disease risk. METHODS: Using an established psychosocial stress task flanked by two resting states, we measured subjective, physiological, and brain responses to acute stress and recovery in 217 participants with and without mood and anxiety disorders. To estimate blockwise changes in stress-induced activation and FC, we used hierarchical mixed-effects models based on denoised time series within predefined stress-related regions. We predicted inter- and intraindividual differences in stress phases (anticipation vs. stress vs. recovery) and transdiagnostic dimensions of stress reactivity using elastic net and support vector machines. RESULTS: We identified four subnetworks showing distinct changes in FC over time. FC but not activation trajectories predicted the stress phase (accuracy = 70%, pperm < .001) and increases in heart rate (R2 = 0.075, pperm < .001). Critically, individual spatiotemporal trajectories of changes across networks also predicted negative affectivity (ΔR2 = 0.075, pperm = .030) but not the presence or absence of a mood and anxiety disorder. CONCLUSIONS: Spatiotemporal dynamics of brain network reconfiguration induced by stress reflect individual differences in the psychopathology dimension of negative affectivity. These results support the idea that vulnerability for mood and anxiety disorders can be conceptualized best at the level of network dynamics, which may pave the way for improved prediction of individual risk.


Asunto(s)
Mapeo Encefálico , Encéfalo , Afecto , Trastornos de Ansiedad , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Psicopatología
10.
Hum Brain Mapp ; 43(1): 341-351, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198905

RESUMEN

Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = -0.164 to -0.180). Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = -0.173 to -0.184). Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.


Asunto(s)
Amígdala del Cerebelo/patología , Cuerpo Estriado/patología , Trastorno Depresivo Mayor/patología , Hipocampo/patología , Neuroimagen , Tálamo/patología , Amígdala del Cerebelo/diagnóstico por imagen , Cuerpo Estriado/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Estudios Multicéntricos como Asunto , Tálamo/diagnóstico por imagen
11.
Hum Brain Mapp ; 43(1): 207-233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368865

RESUMEN

Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013-12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi-)genetics. Finally, we highlight points where FreeSurfer-based hippocampal subfield studies may be optimized.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neuroimagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Estudios Multicéntricos como Asunto , Neuroimagen/métodos , Neuroimagen/normas , Control de Calidad
12.
Hum Brain Mapp ; 43(2): 665-680, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622518

RESUMEN

The diameter of the human pupil tracks working memory processing and is associated with activity in the frontoparietal network. At the same time, recent neuroimaging research has linked human pupil fluctuations to activity in the salience network. In this combined functional magnetic resonance imaging (fMRI)/pupillometry study, we recorded the pupil size of healthy human participants while they performed a blockwise organized working memory task (N-back) inside an MRI scanner in order to monitor the pupil fluctuations associated neural activity during working memory processing. We first confirmed that mean pupil size closely followed working memory load. Combining this with fMRI data, we focused on blood oxygen level dependent (BOLD) correlates of mean pupil size modeled onto the task blocks as a parametric modulation. Interrogating this modulated task regressor, we were able to retrieve the frontoparietal network. Next, to fully exploit the within-block dynamics, we divided the blocks into 1 s time bins and filled these with corresponding pupil change values (first-order derivative of pupil size). We found that pupil change within N-back blocks was positively correlated with BOLD amplitudes in the areas of the salience network (namely bilateral insula, and anterior cingulate cortex). Taken together, fMRI with simultaneous measurement of pupil parameters constitutes a valuable tool to dissect working memory subprocesses related to both working memory load and salience of the presented stimuli.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Memoria a Corto Plazo/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Pupila/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
13.
Transl Psychiatry ; 11(1): 511, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620830

RESUMEN

Major depressive disorder (MDD) is associated with abnormal neural circuitry. It can be measured by assessing functional connectivity (FC) at resting-state functional MRI, that may help identifying neural markers of MDD and provide further efficient diagnosis and monitor treatment outcomes. The main aim of the present study is to investigate, in an unbiased way, functional alterations in patients with MDD using a large multi-center dataset from the PsyMRI consortium including 1546 participants from 19 centers ( www.psymri.com ). After applying strict exclusion criteria, the final sample consisted of 606 MDD patients (age: 35.8 ± 11.9 y.o.; females: 60.7%) and 476 healthy participants (age: 33.3 ± 11.0 y.o.; females: 56.7%). We found significant relative hypoconnectivity within somatosensory motor (SMN), salience (SN) networks and between SMN, SN, dorsal attention (DAN), and visual (VN) networks in MDD patients. No significant differences were detected within the default mode (DMN) and frontoparietal networks (FPN). In addition, alterations in network organization were observed in terms of significantly lower network segregation of SMN in MDD patients. Although medicated patients showed significantly lower FC within DMN, FPN, and SN than unmedicated patients, there were no differences between medicated and unmedicated groups in terms of network organization in SMN. We conclude that the network organization of cortical networks, involved in processing of sensory information, might be a more stable neuroimaging marker for MDD than previously assumed alterations in higher-order neural networks like DMN and FPN.


Asunto(s)
Conectoma , Trastorno Depresivo Mayor , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Descanso , Adulto Joven
15.
Transl Psychiatry ; 11(1): 192, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782385

RESUMEN

A retrospective meta-analysis of magnetic resonance imaging voxel-based morphometry studies proposed that reduced gray matter volumes in the dorsal anterior cingulate and the left and right anterior insular cortex-areas that constitute hub nodes of the salience network-represent a common substrate for major psychiatric disorders. Here, we investigated the hypothesis that the common substrate serves as an intermediate phenotype to detect genetic risk variants relevant for psychiatric disease. To this end, after a data reduction step, we conducted genome-wide association studies of a combined common substrate measure in four population-based cohorts (n = 2271), followed by meta-analysis and replication in a fifth cohort (n = 865). After correction for covariates, the heritability of the common substrate was estimated at 0.50 (standard error 0.18). The top single-nucleotide polymorphism (SNP) rs17076061 was associated with the common substrate at genome-wide significance and replicated, explaining 1.2% of the common substrate variance. This SNP mapped to a locus on chromosome 5q35.2 harboring genes involved in neuronal development and regeneration. In follow-up analyses, rs17076061 was not robustly associated with psychiatric disease, and no overlap was found between the broader genetic architecture of the common substrate and genetic risk for major depressive disorder, bipolar disorder, or schizophrenia. In conclusion, our study identified that common genetic variation indeed influences the common substrate, but that these variants do not directly translate to increased disease risk. Future studies should investigate gene-by-environment interactions and employ functional imaging to understand how salience network structure translates to psychiatric disorder risk.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Trastorno Bipolar/genética , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos , Esquizofrenia/genética
16.
Mol Psychiatry ; 26(9): 4839-4852, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32467648

RESUMEN

Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the relationship between obesity and brain structure using structural MRI (n = 6420) and genetic data (n = 3907) from the ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical thickness (maximum Cohen´s d (left fusiform gyrus) = -0.33). The observed regional distribution and effect size of cortical thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain structure under physiological and pathological brain conditions.


Asunto(s)
Trastorno Depresivo Mayor , Anciano , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Trastorno Depresivo Mayor/genética , Humanos , Imagen por Resonancia Magnética , Obesidad/genética , Factores de Riesgo
17.
Transl Psychiatry ; 10(1): 425, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293520

RESUMEN

It has been difficult to find robust brain structural correlates of the overall severity of major depressive disorder (MDD). We hypothesized that specific symptoms may better reveal correlates and investigated this for the severity of insomnia, both a key symptom and a modifiable major risk factor of MDD. Cortical thickness, surface area and subcortical volumes were assessed from T1-weighted brain magnetic resonance imaging (MRI) scans of 1053 MDD patients (age range 13-79 years) from 15 cohorts within the ENIGMA MDD Working Group. Insomnia severity was measured by summing the insomnia items of the Hamilton Depression Rating Scale (HDRS). Symptom specificity was evaluated with correlates of overall depression severity. Disease specificity was evaluated in two independent samples comprising 2108 healthy controls, and in 260 clinical controls with bipolar disorder. Results showed that MDD patients with more severe insomnia had a smaller cortical surface area, mostly driven by the right insula, left inferior frontal gyrus pars triangularis, left frontal pole, right superior parietal cortex, right medial orbitofrontal cortex, and right supramarginal gyrus. Associations were specific for insomnia severity, and were not found for overall depression severity. Associations were also specific to MDD; healthy controls and clinical controls showed differential insomnia severity association profiles. The findings indicate that MDD patients with more severe insomnia show smaller surfaces in several frontoparietal cortical areas. While explained variance remains small, symptom-specific associations could bring us closer to clues on underlying biological phenomena of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos del Inicio y del Mantenimiento del Sueño , Adolescente , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Trastorno Depresivo Mayor/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Adulto Joven
18.
Hum Brain Mapp ; 41(14): 4010-4023, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32597537

RESUMEN

Acute and chronic stress are important factors in the development of mental disorders. Reliable measurement of stress reactivity is therefore pivotal. Critically, experimental induction of stress often involves multiple "hits" and it is an open question whether individual differences in responses to an earlier stressor lead to habituation, sensitization, or simple additive effects on following events. Here, we investigated the effect of the individual cortisol response to intravenous catheter placement (IVP) on subsequent neural, psychological, endocrine, and autonomous stress reactivity. We used an established psychosocial stress paradigm to measure the acute stress response (Stress) and recovery (PostStress) in 65 participants. Higher IVP-induced cortisol responses were associated with lower pulse rate increases during stress recovery (b = -4.8 bpm, p = .0008) and lower increases in negative affect after the task (b = -4.2, p = .040). While the cortisol response to IVP was not associated with subsequent specific stress-induced neural activation patterns, the similarity of brain responses Pre- and PostStress was higher IVP-cortisol responders (t[64] = 2.35, p = .022) indicating faster recovery. In conclusion, preparatory stress induced by IVP reduced reactivity in a subsequent stress task by modulating the latency of stress recovery. Thus, an individually stronger preceding release of cortisol may attenuate a second physiological response and perceived stress suggesting that relative changes, not absolute levels are crucial for stress attribution. Our study highlights that considering the entire trajectory of stress induction during an experiment is important to develop reliable individual biomarkers.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Encéfalo/fisiología , Habituación Psicofisiológica/fisiología , Hidrocortisona/metabolismo , Red Nerviosa/fisiología , Estrés Fisiológico/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Adulto , Afecto/fisiología , Encéfalo/diagnóstico por imagen , Conectoma , Electrocardiografía , Femenino , Respuesta Galvánica de la Piel/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Hidrocortisona/sangre , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Oximetría , Saliva/metabolismo , Estrés Psicológico/sangre , Adulto Joven
19.
BMC Psychiatry ; 20(1): 213, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393358

RESUMEN

BACKGROUND: A major research finding in the field of Biological Psychiatry is that symptom-based categories of mental disorders map poorly onto dysfunctions in brain circuits or neurobiological pathways. Many of the identified (neuro) biological dysfunctions are "transdiagnostic", meaning that they do not reflect diagnostic boundaries but are shared by different ICD/DSM diagnoses. The compromised biological validity of the current classification system for mental disorders impedes rather than supports the development of treatments that not only target symptoms but also the underlying pathophysiological mechanisms. The Biological Classification of Mental Disorders (BeCOME) study aims to identify biology-based classes of mental disorders that improve the translation of novel biomedical findings into tailored clinical applications. METHODS: BeCOME intends to include at least 1000 individuals with a broad spectrum of affective, anxiety and stress-related mental disorders as well as 500 individuals unaffected by mental disorders. After a screening visit, all participants undergo in-depth phenotyping procedures and omics assessments on two consecutive days. Several validated paradigms (e.g., fear conditioning, reward anticipation, imaging stress test, social reward learning task) are applied to stimulate a response in a basic system of human functioning (e.g., acute threat response, reward processing, stress response or social reward learning) that plays a key role in the development of affective, anxiety and stress-related mental disorders. The response to this stimulation is then read out across multiple levels. Assessments comprise genetic, molecular, cellular, physiological, neuroimaging, neurocognitive, psychophysiological and psychometric measurements. The multilevel information collected in BeCOME will be used to identify data-driven biologically-informed categories of mental disorders using cluster analytical techniques. DISCUSSION: The novelty of BeCOME lies in the dynamic in-depth phenotyping and omics characterization of individuals with mental disorders from the depression and anxiety spectrum of varying severity. We believe that such biology-based subclasses of mental disorders will serve as better treatment targets than purely symptom-based disease entities, and help in tailoring the right treatment to the individual patient suffering from a mental disorder. BeCOME has the potential to contribute to a novel taxonomy of mental disorders that integrates the underlying pathomechanisms into diagnoses. TRIAL REGISTRATION: Retrospectively registered on June 12, 2019 on ClinicalTrials.gov (TRN: NCT03984084).


Asunto(s)
Productos Biológicos , Trastornos Mentales , Trastornos Psicóticos , Trastornos de Ansiedad/diagnóstico , Miedo , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/genética , Recompensa
20.
J Magn Reson Imaging ; 52(3): 739-751, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32073206

RESUMEN

BACKGROUND: Conventional T2 *-weighted functional magnetic resonance imaging (fMRI) is performed with echo-planar imaging (EPI) sequences that create substantial acoustic noise. The loud acoustic noise not only affects the activation of the auditory cortex, but may also interfere with resting state and task fMRI experiments. PURPOSE: To demonstrate the feasibility of a novel, quiet, T2 *, whole-brain blood oxygenation level-dependent (BOLD)-fMRI method, termed Looping Star, compared to conventional multislice gradient-echo EPI. STUDY TYPE: Prospective. PHANTOM/SUBJECTS: Glover stability QA phantom; 10 healthy volunteers. FIELD STRENGTH/SEQUENCE: 3.0T: gradient echo (GE)-EPI and T2 * Looping Star fMRI. ASSESSMENT: Looping Star fMRI was presented and compared to GE-EPI with a working memory (WM) task and resting state (RS) experiments. Temporal stability and acoustic measurements were obtained for both methods. Functional maps and activation accuracy were compared to evaluate the performance of the novel sequence. STATISTICAL TESTS: Mean and standard deviation values were analyzed for temporal stability and acoustic noise tests. Activation maps were assessed with one-sample t-tests and contrast estimates (CE). Paired t-tests and receiver operator characteristic (ROC) were used to compare fMRI sensitivity and performance. RESULTS: Looping Star presented a 98% reduction in sound pressure compared with GE-EPI, with stable temporal stability (0.09% percent fluctuation), but reduced temporal signal-to-noise ratio (tSNR) (mean difference = 15.9%). The novel method yielded consistent activations for RS and WM (83.4% and 69.5% relative BOLD sensitivity), which increased with task difficulty (mean CE 2-back = 0.56 vs. 0-back = 0.08, P < 0.05). A few differences in spatial activations were found between sequences, leading to a 4-8% lower activation accuracy with Looping Star. DATA CONCLUSION: Looping Star provides a suitable approach for whole-brain coverage with sufficient spatiotemporal resolution and BOLD sensitivity, with only 0.5 dB above ambient noise. From the comparison with GE-EPI, further developments of Looping Star fMRI should target increased sensitivity and spatial specificity for both RS and task experiments. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:739-751.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Humanos , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...