Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Sports Act Living ; 4: 983888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439622

RESUMEN

Non-contact anterior cruciate ligament injuries typically occur during cutting maneuvers and are associated with high peak knee abduction moments (KAM) within early stance. To screen athletes for injury risk or quantify the efficacy of prevention programs, it may be necessary to design tasks that mimic game situations. Thus, this study compared KAMs and ranking consistency of female handball players in three sport-specific fake-and-cut tasks of increasing complexity. The biomechanics of female handball players (n = 51, mean ± SD: 66.9 ± 7.8 kg, 1.74 ± 0.06 m, 19.2 ± 3.4 years) were recorded with a 3D motion capture system and force plates during three standardized fake-and-cut tasks. Task 1 was designed as a simple pre-planned cut, task 2 included catching a ball before a pre-planned cut in front of a static defender, and task 3 was designed as an unanticipated cut with three dynamic defenders involved. Inverse dynamics were used to calculate peak KAM within the first 100 ms of stance. KAM was decomposed into the frontal plane knee joint moment arm and resultant ground reaction force. RANOVAs (α ≤ 0.05) were used to reveal differences in the KAM magnitudes, moment arm, and resultant ground reaction force for the three tasks. Spearman's rank correlations were calculated to test the ranking consistency of the athletes' KAMs. There was a significant task main effect on KAM (p = 0.02; η p 2 = 0.13). The KAM in the two complex tasks was significantly higher (task 2: 1.73 Nm/kg; task 3: 1.64 Nm/kg) than the KAM in the simplest task (task 1: 1.52 Nm/kg). The ranking of the peak KAM was consistent regardless of the task complexity. Comparing tasks 1 and 2, an increase in KAM resulted from an increased frontal plane moment arm. Comparing tasks 1 and 3, higher KAM in task 3 resulted from an interplay between both moment arm and the resultant ground reaction force. In contrast to previous studies, unanticipated cutting maneuvers did not produce the highest KAMs. These findings indicate that the players have developed an automated sport-specific cutting technique that is utilized in both pre-planned and unanticipated fake-and-cut tasks.

2.
Int J Sports Physiol Perform ; 17(8): 1280-1288, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35894923

RESUMEN

PURPOSE: This study examined the associations among common assessments for measuring strength and power in the lower body of high-performing athletes, including both cross-sectional and longitudinal data. METHODS: A total of 100 participants, including both male (n = 83) and female (n = 17) athletes (21 [4] y, 182 [9] cm, 78 [12] kg), were recruited for the study using a multicenter approach. The participants underwent physical testing 4 times. The first 2 sessions (1 and 2) were separated by ∼1 week, followed by a period of 2 to 6 months, whereas the last 2 sessions (3 and 4) were also separated by ∼1 week. The test protocol consisted of squat jumps, countermovement jumps, jump and reach, 30-m sprint, 1-repetition-maximum squat, sprint cycling, and a leg-press test. RESULTS: There were generally acceptable correlations among all performance measures. Variables from the countermovement jumps and leg-press power correlated strongly with all performance assessments (r = .52-.79), while variables from sprint running and squat-jump power displayed more incoherent correlations (r = .21-.82). For changes over time, the correlations were mostly strong, albeit systematically weaker than for cross-sectional measures. CONCLUSIONS: The associations observed among the performance assessments seem to be consistent for both cross-sectional data and longitudinal change scores. The weaker correlations for change scores are most likely mainly caused by lower between-subjects variations in the change scores than for the cross-sectional data. The present study provides novel information, helping researchers and practitioners to better interpret the relationships across common performance assessment methods.


Asunto(s)
Rendimiento Atlético , Fuerza Muscular , Atletas , Estudios Transversales , Femenino , Humanos , Masculino , Músculo Esquelético , Levantamiento de Peso
3.
Int J Sports Physiol Perform ; 17(7): 1103-1110, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35477896

RESUMEN

PURPOSE: This study examined the test-retest reliability of common assessments for measuring strength and power of the lower body in high-performing athletes. METHODS: A total of 100 participants, including both male (n = 83) and female (n = 17) athletes (21 [4] y, 182 [9] cm, and 78 [12] kg), were recruited for this study, using a multicenter approach. The participants underwent physical testing 4 times. The first 2 sessions (1 and 2) were separated by ∼1 week, followed by a period of 2 to 6 months, whereas the last 2 sessions (3 and 4) were again separated by ∼1 week. The test protocol consisted of squat jumps, countermovement jumps, jump and reach, 30-m sprint, 1-repetition-maximum squat, sprint cycling, and a leg-press test. RESULTS: The typical error (%) ranged from 1.3% to 8.5% for all assessments. The change in means ranged from -1.5% to 2.5% for all assessments, whereas the interclass correlation coefficient ranged from .85 to .97. The smallest worthwhile change (0.2 of baseline SD) ranged from 1.2% to 5.0%. The ratio between the typical error (%) and the smallest worthwhile change (%) ranged from 0.5 to 1.2. When observing the reliability across testing centers, considerable differences in reliability were observed (typical error [%] ratio: 0.44-1.44). CONCLUSIONS: Most of the included assessments can be used with confidence by researchers and coaches to measure strength and power in athletes. Our results highlight the importance of controlling testing reliability at each testing center and not relying on data from others, despite having applied the same protocol.


Asunto(s)
Rendimiento Atlético , Carrera , Atletas , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético , Reproducibilidad de los Resultados
4.
PLoS One ; 16(2): e0245791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524058

RESUMEN

The aim of the study was to examine the test-retest reliability and agreement across methods for assessing individual force-velocity (FV) profiles of the lower limbs in athletes. Using a multicenter approach, 27 male athletes completed all measurements for the main analysis, with up to 82 male and female athletes on some measurements. The athletes were tested twice before and twice after a 2- to 6-month period of regular training and sport participation. The double testing sessions were separated by ~1 week. Individual FV-profiles were acquired from incremental loading protocols in squat jump (SJ), countermovement jump (CMJ) and leg press. A force plate, linear encoder and a flight time calculation method were used for measuring force and velocity during SJ and CMJ. A linear regression was fitted to the average force and velocity values for each individual test to extrapolate the FV-variables: theoretical maximal force (F0), velocity (V0), power (Pmax), and the slope of the FV-profile (SFV). Despite strong linearity (R2>0.95) for individual FV-profiles, the SFV was unreliable for all measurement methods assessed during vertical jumping (coefficient of variation (CV): 14-30%, interclass correlation coefficient (ICC): 0.36-0.79). Only the leg press exercise, of the four FV-variables, showed acceptable reliability (CV:3.7-8.3%, ICC:0.82-0.98). The agreement across methods for F0 and Pmax ranged from (Pearson r): 0.56-0.95, standard error of estimate (SEE%): 5.8-18.8, and for V0 and SFV r: -0.39-0.78, SEE%: 12.2-37.2. With a typical error of 1.5 cm (5-10% CV) in jump height, SFV and V0 cannot be accurately obtained, regardless of the measurement method, using a loading range corresponding to 40-70% of F0. Efforts should be made to either reduce the variation in jumping performance or to assess loads closer to the FV-intercepts. Coaches and researchers should be aware of the poor reliability of the FV-variables obtained from vertical jumping, and of the differences across measurement methods.


Asunto(s)
Atletas , Prueba de Esfuerzo/métodos , Ejercicio Físico/fisiología , Extremidad Inferior/fisiología , Aptitud Física/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Fuerza Muscular , Rango del Movimiento Articular , Reproducibilidad de los Resultados , Adulto Joven
5.
PeerJ ; 8: e10044, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062443

RESUMEN

The present randomized cross-over controlled study aimed to compare the rate of recovery from a strength-oriented exercise session vs. a power-oriented session with equal work. Sixteen strength-trained individuals conducted one strength-oriented session (five repetitions maximum (RM)) and one power-oriented session (50% of 5RM) in randomized order. Squat jump (SJ), countermovement jump (CMJ), 20-m sprint, and squat and bench press peak power and estimated 1RMs were combined with measures of rate of perceived exertion (RPE) and perceived recovery status (PRS), before, immediately after and 24 and 48 h after exercise. Both sessions induced trivial to moderate performance decrements in all variables. Small reductions in CMJ height were observed immediately after both the strength-oriented session (7 ± 6%) and power-oriented session (5 ± 5%). Between 24 and 48 h after both sessions CMJ and SJ heights and 20 m sprint were back to baseline. However, in contrast to the power-oriented session, recovery was not complete 48 h after the strength-oriented session, as indicated by greater impairments in CMJ eccentric and concentric peak forces, SJ rate of force development (RFD) and squat peak power. In agreement with the objective performance measurements, RPE and PRS ratings demonstrated that the strength-oriented session was experienced more strenuous than the power-oriented session. However, these subjective measurements agreed poorly with performance measurements at the individual level. In conclusion, we observed a larger degree of neuromuscular impairment and longer recovery times after a strength-oriented session than after a power-oriented session with equal total work, measured by both objective and subjective assessments. Nonetheless, most differences were small or trivial after either session. It appears necessary to combine several tests and within-test analyses (e.g., CMJ height, power and force) to reveal such differences. Objective and subjective assessments of fatigue and recovery cannot be used interchangeably; rather they should be combined to give a meaningful status for an individual in the days after a resistance exercise session.

6.
J Sports Sci Med ; 18(1): 91-100, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787656

RESUMEN

The relationship between dynamic postural control, functional mobility and team handball throwing performance, velocity and accuracy, is largely unknown. The hand reach star excursion balance test (HSEBT) is a full kinetic chain assessment tool of these factors. Specifically, L135 and R135 (extension) reaches elicit joint movement combinations similar to the cocking and acceleration phase, while the L45 and R45 (flexion) reaches elicit joint movement combinations similar to the follow-through. The purpose of this study was to determine if specific HSEBT reach measures correlate with team handball throwing performance. Eleven elite female team handball players (21.7 ± 1.8 years; 71.3 ± 9.6 kg; 1.75 ± 0.07 m) executed selected HSEBT reaches before performing five valid step-up overhead throws (1x1m target) from which throwing velocity (motion capture) and accuracy (mean radial error) were quantified. Significant relationships between HSEBT measures and mean radial error, but not throwing velocity were established. Specifically, extension composite scores (L135+R135) for the dominant (150.7 ± 17.4cm) and non-dominant foot (148.1 ± 17.5 cm) were correlated with mean radial error (p < 0.05). Also, specific reaches on the dominant (L135: 87.4 ± 5.6 cm; R135: 63.4 ± 11.8 cm) and non-dominant (R135: 87.0 ± 6.1 cm) foot were correlated with throwing error (p < 0.05). The lack of significant findings to throwing velocity might be due to a ceiling effect of both L135 and R135 and of throwing velocity. We conclude that while there may be other reasons for handball players to train and test functional mobility and dynamic postural control as measured in the HSEBT, no beneficial effect on throwing performance should be expected in an elite group of handball players.


Asunto(s)
Rendimiento Atlético/fisiología , Equilibrio Postural/fisiología , Deportes/fisiología , Fenómenos Biomecánicos , Estudios Transversales , Prueba de Esfuerzo/métodos , Femenino , Humanos , Articulaciones/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Rango del Movimiento Articular/fisiología , Estudios de Tiempo y Movimiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...