Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 225(2): 551-565, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31858235

RESUMEN

The subthalamic nucleus (STN) receives direct cortical inputs which constitute the so-called hyperdirect pathway. In monkeys, motor cortices innervate the whole extent of the STN whereas limbic cortices innervate only its anteromedial part extending more medially outside the nucleus. Tractography studies in humans have also identified motor cortical inputs to the STN, but little is known about the associative and limbic cortical projections. Therefore, the aim of this study was to investigate the anatomo-functional organization of the cortical projections to the STN and to the adjacent medial subthamic region (MSR). We used diffusion-weighted imaging-based tractography acquired from 30 subjects from the Human Connectome Project. We performed a whole-brain probabilistic tractography using MRTrix and extracted streamlines of interest between 39 cortical masks and both the STN and the MSR to provide track-density maps. Agglomerative clustering method was used to classify the voxels of the regions of interest. We found that the STN receives major inputs from the sensorimotor cortices and few inputs from the limbic cortices. On the other hand, the MSR receives mainly cortical limbic projections and few from the sensorimotor cortices. Weak connections were found between the associative cortices and both the STN and the MSR. We found a dominant motor cluster located in the posterolateral STN, a limbic cluster located medially in the MSR, and an intermediate motor-limbic cluster in between. Our findings show that the hyperdirect pathway is anatomo-functionally organized with a poor participation of associative cortices.


Asunto(s)
Sistema Límbico/anatomía & histología , Corteza Sensoriomotora/anatomía & histología , Núcleo Subtalámico/anatomía & histología , Adulto , Conectoma , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Sistema Límbico/diagnóstico por imagen , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Corteza Sensoriomotora/diagnóstico por imagen , Núcleo Subtalámico/diagnóstico por imagen
2.
Mov Disord ; 34(2): 218-227, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30485555

RESUMEN

BACKGROUND: Deep brain stimulation of the pedunculopontine nucleus has been performed to treat dopamine-resistant gait and balance disorders in patients with degenerative diseases. The outcomes, however, are variable, which may be the result of the lack of a well-defined anatomical target. OBJECTIVES: The objectives of this study were to identify the main neuronal populations of the pedunculopontine and the cuneiform nuclei that compose the human mesencephalic locomotor region and to compare their 3-dimensional distribution with those found in patients with Parkinson's disease and progressive supranuclear palsy. METHODS: We used high-field MRI, immunohistochemistry, and in situ hybridization to characterize the distribution of the different cell types, and we developed software to merge all data within a common 3-dimensional space. RESULTS: We found that cholinergic, GABAergic, and glutamatergic neurons comprised the main cell types of the mesencephalic locomotor region, with the peak densities of cholinergic and GABAergic neurons similarly located within the rostral pedunculopontine nucleus. Cholinergic and noncholinergic neuronal losses were homogeneous in the mesencephalic locomotor region of patients, with the peak density of remaining neurons at the same location as in controls. The degree of denervation of the pedunculopontine nucleus was highest in patients with progressive supranuclear palsy, followed by Parkinson's disease patients with falls. CONCLUSIONS: The peak density of cholinergic and GABAergic neurons was located similarly within the rostral pedunculopontine nucleus not only in controls but also in pathological cases. The neuronal loss was homogeneously distributed and highest in the pedunculopontine nucleus of patients with falls, which suggests a potential pathophysiological link. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Tronco Encefálico/patología , Mesencéfalo/patología , Enfermedad de Parkinson/patología , Estimulación Encefálica Profunda/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neuronas/patología , Núcleo Tegmental Pedunculopontino/patología , Parálisis Supranuclear Progresiva/patología
3.
Neuroimage ; 147: 66-78, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27956208

RESUMEN

The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information.


Asunto(s)
Locomoción/fisiología , Mesencéfalo/anatomía & histología , Mesencéfalo/fisiología , Primates/fisiología , Adulto , Animales , Ganglios Basales/fisiología , Mapeo Encefálico , Chlorocebus aethiops , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Macaca fascicularis , Masculino , Adulto Joven
4.
Front Neuroanat ; 10: 119, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28154527

RESUMEN

The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson's disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson's disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the potential to help identify white matter tracts connecting DBS targets in functional neurosurgery intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA