Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 897: 165334, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419362

RESUMEN

The widespread agricultural and industrial emissions of copper-based chemicals have increased copper levels in soils worldwide. Copper contamination can cause a range of toxic effects on soil animals and influence thermal tolerance. However, toxic effects are commonly investigated using simple endpoints (e.g., mortality) and acute tests. Thus, how organisms respond to ecological realistic sub-lethal and chronic exposures across the entire thermal scope of an organism is not known. In this study, we investigated the effects of copper exposure on the thermal performance of a springtail (Folsomia candida), regarding its survival, individual growth, population growth, and the composition of membrane phospholipid fatty acids. Folsomia candida (Collembola) is a typical representative of soil arthropods and a model organism that has been widely used for ecotoxicological studies. In a full-factorial soil microcosm experiment, springtails were exposed to three levels of copper (ca. 17 (control), 436, and 1629 mg/kg dry soil) and ten temperatures from 0 to 30 °C. Results showed that three-week copper exposure at temperatures below 15 °C and above 26 °C negatively influenced the springtail survival. The body growth was significantly lower for the springtails in high-dose copper soils at temperatures above 24 °C. A high copper level reduced the number of juveniles by 50 %, thereby impairing population growth. Both temperature and copper exposure significantly impacted membrane properties. Our results indicated that high-dose copper exposure compromised the tolerance to suboptimal temperatures and decreased maximal performance, whereas medium copper exposure partially reduced the performance at suboptimal temperatures. Overall, copper contamination reduced the thermal tolerance of springtails at suboptimal temperatures, probably by interfering with membrane homeoviscous adaptation. Our results show that soil organisms living in copper-contaminated areas might be more sensitive to thermally stressful periods.


Asunto(s)
Artrópodos , Contaminantes del Suelo , Animales , Cobre/toxicidad , Contaminantes del Suelo/toxicidad , Contaminación Ambiental , Suelo/química , Reproducción
2.
J Comp Physiol B ; 192(3-4): 435-445, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35312816

RESUMEN

Tolerance to thermal extremes is critical for the geographic distributions of ectotherm species, many of which are probably going to be modified by future climatic changes. To predict species distributions it is important to understand the potential of species to adapt to changing thermal conditions. Here, we tested whether the thermal tolerance traits of a common freeze-tolerant potworm were correlated with climatic conditions and if adaptation to extreme cold constrains the evolutionary potential for high temperature tolerance. Further, we tested if evolution of thermal tolerance traits is associated with costs in other fitness traits (body size and reproduction). Lastly, we tested if slopes of temperature-survival curves (i.e., the sensitivity distribution) are related to tolerance itself. Using 24 populations of the potworm, Enchytraeus albidus Henle (Enchytraeidae), collected from a wide range of climatic conditions, we established a common garden experiment in which we determined high and low temperature tolerance (using survival as endpoint), average reproductive output and adult body size. Heat tolerance was not related to environmental temperatures whereas lower lethal temperature was about 10 °C lower in Arctic populations than in populations from temperate regions. Reproduction was not related to environmental temperature, but was negatively correlated with cold tolerance. One explanation for the trade-off between cold tolerance and reproduction could be that the more cold-hardy populations need to channel energy to large glycogen reserves at the expense of less energy expenditure for reproduction. Adult body size was negatively related to environmental temperature. Finally, the slopes of temperature-survival curves were significantly correlated with critical temperature limits for heat and cold tolerance; i.e., slopes increased with thermal tolerance. Our results suggest that relatively heat-sensitive populations possess genetic variation, leaving room for improved heat tolerance through evolutionary processes, which may alleviate the effects of a warmer future climate in the Arctic. On the other hand, we observed relatively narrow sensitivity distributions (i.e., less variation) in the most heat tolerant populations. Taken together, our results suggest that both cold and heat tolerance can only be selected for (and improved) until a certain limit has been reached.


Asunto(s)
Frío Extremo , Oligoquetos , Animales , Regiones Árticas , Frío , Calor , Oligoquetos/fisiología , Suelo , Temperatura
3.
J Insect Physiol ; 137: 104362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35108549

RESUMEN

Accurately phenotyping numerous test subjects is essential for most experimental research. Collecting such data can be tedious or time-consuming, and it can be biased or limited using manual observations. The thermal tolerance of small ectotherms is a good example of this type of phenotypic data, and it is widely used to investigate thermal adaptation, acclimation capacity and climate change resilience of small ectotherms. Here, we present the results of automatically generated thermal tolerance data using motion-tracking software on video recordings. The automatization was applied to two different heat tolerance assays, in two Drosophila species and used temperature acclimation to create variation in thermal tolerances. We find similar effect sizes of acclimation and hardening responses between manual and automated approaches, but different absolute tolerance estimates. This discrepancy likely reflects both technical differences in the assay conditions as well as the measured end-points of the assays. We conclude that both methods generate biological meaningful results, which reflect different aspects of the thermal biology, find no evidence of inflated variance in the manually scored assays, but find that automation can increase throughput several times without compromising quality. Further we show that the method can be applied to a wide range of arthropod taxa. We suggest that this automated method is a useful example of high throughput phenotyping. Further, we suggest this approach might be applied to other tedious laboratory traits, such as desiccation or starvation tolerance, with similar benefits to throughput but caution that the interpretation and potential comparison to results using different methodology rely on thorough validation of the assay and the involved biological mechanism.


Asunto(s)
Aclimatación , Calor , Aclimatación/fisiología , Animales , Automatización , Humanos , Insectos , Temperatura
4.
Genes (Basel) ; 13(1)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35052494

RESUMEN

Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‱) and low salinities (15‱) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‱, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‱, 15‱ and 5‱) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world.


Asunto(s)
Aclimatación , Respuesta al Choque Térmico , Calor , Mytilus edulis/fisiología , Presión Osmótica , Salinidad , Estaciones del Año , Animales , Groenlandia
5.
Bull Entomol Res ; 112(3): 311-317, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33541445

RESUMEN

The quality of biological control agents used in augmentative releases may be affected by rearing conditions due to inbreeding or laboratory adaptation, or to phenotypic effects of the rearing environment. We hypothesized that individuals from a wild population would be in better body condition and kill more prey than individuals from a commercially produced population. We caught wild Orius majusculus (Reuter) in a maize field and compared their initial body mass, survival, and prey reduction capacity to commercially produced O. majusculus. Predation capacity and survival were compared in short-term Petri dish tests with Frankliniella tenuicornis (Uzel) thrips, Ephestia kuehniella (Zeller) moth eggs, or Rhopalosiphum padi (L.) aphids as prey, and in longer-term outdoor mesocosms containing live seedling wheat grass with thrips or aphids as prey. Wild-caught O. majusculus were typically heavier and overall had higher survival during tests than commercially produced O. majusculus. Females were heavier than males and typically killed more prey. However, we found no difference between wild-caught and commercially produced individuals on prey reduction, neither in Petri dishes nor in mesocosms. Our study suggests that commercially produced O. majusculus have lower body condition than wild O. majusculus due to their lower body mass and survival, but that this does not have any negative effect on the number of pest prey killed over the timelines and conditions of our tests. Commercially produced O. majusculus thus did not have a lower impact on pest prey numbers than wild-caught individuals and therefore had similar biological control value under our study conditions.


Asunto(s)
Áfidos , Heterópteros , Mariposas Nocturnas , Thysanoptera , Animales , Femenino , Masculino , Conducta Predatoria
6.
J Anim Ecol ; 90(6): 1515-1524, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33713446

RESUMEN

Temperatures in the Arctic are increasing at a faster pace than at lower latitudes resulting in range expansion of boreal species. In Greenland, the warming also drives accelerating melt of the Greenland Ice Sheet resulting in more meltwater entering Greenland fjords in summer. Our aim was to determine if increasing summer temperatures combined with lower salinity can induce the expression of stress-related proteins, for example, heat shock protein, in boreal intertidal mussels in Greenland, and whether low salinity reduces the upper thermal limit at which mortality occurs. We conducted a mortality experiment, using 12 different combinations of salinity and air temperature treatments during a simulated tidal regime, and quantified the change in mRNA levels of five stress-related genes (hsp24, hsp70, hsp90, sod and p38) in surviving mussels to discern the level of sublethal stress. Heat-induced mortality occurred in mussels exposed to an air temperature of 30°C and mortality was higher in treatments with lowered salinity (5 and 15‰), which confirms that low habitat salinity decreases the upper thermal limit of Mytilus edulis. The gene expression analysis supported the mortality results, with the highest gene expression found at combinations of high temperature and low salinity. Combined with seasonal measurements of intertidal temperatures in Greenland, we suggest heat stress occurs in low salinity intertidal area, and that further lowered salinity in coastal water due to increased run-off can make intertidal bivalves more susceptible to summer heat stress. This study thus provides an example of how different impacts of climate warming can work synergistically to stress marine organisms.


Asunto(s)
Mytilus edulis , Animales , Groenlandia , Respuesta al Choque Térmico , Calor , Temperatura
7.
Front Genet ; 11: 555843, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193631

RESUMEN

Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.

8.
Artículo en Inglés | MEDLINE | ID: mdl-31923628

RESUMEN

Low temperatures limit the distribution and abundance of ectotherms. However, many insects can survive low temperatures by employing one of two cold tolerance strategies: freeze avoidance or freeze tolerance. Very few species can employ both strategies, but those that do provide a rare opportunity to study the mechanisms that differentiate freeze tolerance and freeze avoidance. We showed that overwintering pupae of the cabbage white butterfly Pieris rapae can be freeze tolerant or freeze avoidant. Pupae from a population of P. rapae in northeastern Russia (Yakutsk) froze at c. -9.3 °C and were freeze-tolerant in 2002-2003 when overwintered outside. However, P. rapae from both Yakutsk and southern Canada (London) acclimated to milder laboratory conditions in 2014 and 2017 froze at lower temperatures (< -20 °C) and were freeze-avoidant. Summer-collected P. rapae larvae (collected in Yakutsk in 2016) were partially freeze-tolerant, and decreased the temperature at which they froze in response to starvation at mild low temperatures (4 °C) and repeated partial freezing events. By comparing similarly-acclimated P. rapae pupae from both populations, we identified molecules that may facilitate low temperature tolerance, including the hemolymph ice-binding molecules and several potential low molecular weight cryoprotectants. Pieris rapae from Yakutsk exhibited high physiological plasticity, accumulating cryoprotectants and almost doubling their hemolymph osmolality when supercooled to -15 °C for two weeks, while the London P. rapae population exhibited minimal plasticity. We hypothesize that physiological plasticity is an important adaptation to extreme low temperatures (i.e. in Yakutsk) and may facilitate the transition between freeze avoidance and freeze tolerance.


Asunto(s)
Adaptación Fisiológica , Mariposas Diurnas/fisiología , Frío , Criobiología , Congelación , Hemolinfa/fisiología , Animales , Canadá , Federación de Rusia
9.
J Therm Biol ; 86: 102428, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31789224

RESUMEN

Ectotherms can use microclimatic variation and behavioral thermoregulation to cope with unfavorable environmental temperatures. However, relatively little is known about how and if thermoregulatory behavior is used across life stages in small ectothermic insects. Here we investigate differences between three specialized Drosophila species from temperate, tropical or desert habitats and one cosmopolitan species by estimating the preferred temperature (Tpref) and the breadth (Tbreadth) of the distribution of adults, adult egg-laying, and larvae in thermal gradients. We also assess the plasticity of thermal preference following developmental acclimation to three constant temperatures. For egg-laying and larvae, we observe significant species differences in preferred temperature but this is not predicted by thermal ecology of the species. We corroborated this with previous studies of other Drosophila species and found that Tpref for egg laying and larvae have no relationship with annual mean temperature of the species' natural habitat. While adults have the greatest mobility, they show the greater variation in preference compared to juveniles contradicting common assumptions. We found evidence of developmental thermal acclimation in adult egg-laying preferred temperature, Tpref increasing with acclimation temperature, and in the breadth of the temperature preference distributions, Tbreadth decreasing with increasing acclimation temperature. Together, these data provide a high resolution and comprehensive look at temperature preferences across life stages and in response to acclimation. Results suggest that thermal preference, particularly in the early life stages, is relatively conserved among species and unrelated to temperature at species origin. Measuring thermal preference, in addition to thermal performance, is essential for understanding how species have adapted/will adapt to their thermal environment.


Asunto(s)
Aclimatación , Drosophila/fisiología , Estadios del Ciclo de Vida , Animales , Drosophila/crecimiento & desarrollo , Femenino , Masculino , Especificidad de la Especie , Temperatura
10.
Philos Trans R Soc Lond B Biol Sci ; 374(1778): 20180548, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31203763

RESUMEN

The thermal biology of ectotherms is often used to infer species' responses to changes in temperature. It is often proposed that temperate species are more cold-tolerant, less heat-tolerant, more plastic, have broader thermal performance curves (TPCs) and lower optimal temperatures when compared to tropical species. However, relatively little empirical work has provided support for this using large interspecific studies. In the present study, we measure thermal tolerance limits and thermal performance in 22 species of Drosophila that developed under common conditions. Specifically, we measure thermal tolerance (CTmin and CTmax) as well as the fitness components viability, developmental speed and fecundity at seven temperatures to construct TPCs for each of these species. For 10 of the species, we also measure thermal tolerance and thermal performance following developmental acclimation to three additional temperatures. Using these data, we test several fundamental hypotheses about the evolution and plasticity of heat and cold resistance and thermal performance. We find that cold tolerance (CTmin) varied between the species according to the environmental temperature in the habitat from which they originated. These data support the idea that the evolution of cold tolerance has allowed species to persist in colder environments. However, contrary to expectation, we find that optimal temperature ( Topt) and the breadth of thermal performance ( Tbreadth) are similar in temperate, widespread and tropical species and we also find that the plasticity of TPCs was constrained. We suggest that the temperature range for optimal thermal performance is either fixed or under selection by the more similar temperatures that prevail during growing seasons. As a consequence, we find that Topt and Tbreadth are of limited value for predicting past, present and future distributions of species. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.


Asunto(s)
Evolución Biológica , Drosophila/fisiología , Aclimatación , Adaptación Fisiológica , Animales , Cambio Climático , Frío , Drosophila/clasificación , Drosophila/genética , Ecosistema , Calor , Estaciones del Año
11.
J Anim Ecol ; 88(2): 258-268, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30303532

RESUMEN

Temperature influences biological processes of ectotherms including ecological interactions, but interaction strengths may depend on species-specific traits. Furthermore, ectotherms acclimate to prevailing thermal conditions by adjusting physiological parameters, which often implies costs to other fitness-related parameters. Both predators and prey may therefore pay thermal acclimation costs following exposure to suboptimal temperatures. However, these costs may be asymmetrical between predator and prey, and between the predator and different species of concurrent prey. We investigated whether thermal pre-exposure affected subsequent kill rate and predator fitness when foraging on prey that differ in ease of capture, and whether changes were primarily caused by predator or by prey pre-exposure effects. Specifically, we were interested in whether there were interactions between predator pre-exposed temperature and specific prey. Using the mesostigmatid mite Gaeolaelaps aculeifer as a generalist predator and the collembolans Folsomia candida and Protaphorura fimata as prey, we measured the impact of present temperature, predator pre-exposure temperature, prey pre-exposure temperature (all 10 or 20°C), prey species, and all interactions on prey numbers killed, predator eggs produced, and exploitation of killed prey in a full factorial design. Mites killed P. fimata in equal numbers independent of the presence of F. candida, but killed F. candida when P. fimata was absent. Mite kill rate and reproduction were significantly affected by mite pre-exposure temperature and test temperature, but not by prey pre-exposure temperature. Significantly more of the slower prey was killed than of the quicker prey. Importantly, we found significant synergistic negative interaction effects between predator cold pre-exposure and hunting prey of higher agility on predator kill rate and reproduction. Our findings show that the negative effects of cold and cold pre-exposure on kill rate and reproduction may be more severe when predators forage on quick prey. The study implies that predator cold exposure has consequences for specific prey survival following cold due to altered predation pressures, which in nature should influence the specific prey population dynamics and apparent competition outcomes. The findings exemplify how not only current but also preceding conditions affect ecological interactions, and that effect strength depends on the species involved.


Asunto(s)
Cadena Alimentaria , Ácaros , Animales , Óvulo , Conducta Predatoria , Reproducción
12.
Proc Biol Sci ; 285(1890)2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30381381

RESUMEN

For over a century, the hypothesis of temperature compensation, the maintenance of similar biological rates in species from different thermal environments, has remained controversial. An alternative idea, that fitness is greater at higher temperatures (the thermodynamic effect), has gained increasing traction. This alternative hypothesis is also being used to understand large-scale biodiversity responses to environmental change. Yet evidence in favour of each of these contrasting hypotheses continues to emerge. In consequence, the fundamental nature of organismal thermal responses and its implications remain unresolved. Here, we investigate these ideas explicitly using a global dataset of 619 observations of four categories of organismal performance, spanning 14 phyla and 403 species. In agreement with both hypotheses, we show a positive relationship between the temperature of maximal performance rate (Topt) and environmental temperature (Tenv) for developmental rate and locomotion speed, but not growth or photosynthesis rate. Next, we demonstrate that relationships between Tenv and the maximal performance rate (Umax) are rarely significant and positive, as expected if a thermodynamic effect predominates. By contrast, a positive relationship between Topt and Umax is always present, but markedly weaker than theoretically predicted. These outcomes demonstrate that while some form of thermodynamic effect exists, ample scope is present for biochemical and physiological adaptation to thermal environments in the form of temperature compensation.


Asunto(s)
Adaptación Fisiológica , Temperatura , Termodinámica , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Crecimiento/fisiología , Locomoción/fisiología , Fotosíntesis/fisiología , Filogenia , Fenómenos Fisiológicos de las Plantas , Plantas
13.
J Therm Biol ; 75: 88-96, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30017057

RESUMEN

Ectothermic animals like fishes are extremely dependent on temperature, as they are not able to change body temperature physiologically. When populations are found in isolated water bodies such as small lakes they will have to respond to stressful high temperatures by behavioral avoidance, phenotypic plasticity or microevolutionary change. We analyzed threespine sticklebacks from two large and two small lakes, representing different isolated populations. We determined maximum critical thermal limits (CTmax) and the associated gene expression responses in three heat shock (hsp60, hsp70, hsp90) and two key metabolic (idh2, fbp2) genes at ecologically relevant moderate heat stress (26 °C) as well as at the critical thermal limit (CTmax). CTmax showed slight variation across populations with no strong indication of local adaptation. Likewise, there was no strong evidence for local adaptation at the level of gene expression. The expression of the metabolic genes indicated a shift from aerobic towards anaerobic energy production with extreme heat stress. We conclude that threespine sticklebacks do not show severe stress during the warmest temperatures they are likely to encounter during current temperature regimes in Denmark, and following this show no sign of local adaptation even in small, isolated water bodies.


Asunto(s)
Calor , Smegmamorpha , Termotolerancia , Animales , Dinamarca , Femenino , Proteínas de Peces/genética , Fructosa-Bifosfatasa/genética , Expresión Génica , Trastornos de Estrés por Calor/genética , Trastornos de Estrés por Calor/fisiopatología , Trastornos de Estrés por Calor/veterinaria , Proteínas de Choque Térmico/genética , Isocitrato Deshidrogenasa/genética , Lagos , Masculino , Smegmamorpha/genética , Smegmamorpha/fisiología
14.
J Therm Biol ; 73: 41-49, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29549990

RESUMEN

Climatic conditions can be very heterogeneous even over small geographic scales, and are believed to be major determinants of the abundance and distribution of species and populations. Organisms are expected to evolve in response to the frequency and magnitude of local thermal extremes, resulting in local adaptation. Using replicate yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae) populations from cold (northern Europe) and warm climates (southern Europe), we compared 1) responses to short-term heat and cold shocks in both sexes, 2) heat shock protein (Hsp70) expression in adults and eggs, and 3) female reproductive traits when facing short-term heat stress during egg maturation. Contrary to expectations, thermal traits showed minor geographic differentiation, with weak evidence for greater heat resistance of southern flies but no differentiation in cold resistance. Hsp70 protein expression was little affected by heat stress, indicating systemic rather than induced regulation of the heat stress response, possibly related to this fly group's preference for cold climes. In contrast, sex differences were pronounced: males (which are larger) endured hot temperatures longer, while females featured higher Hsp70 expression. Heat stress negatively affected various female reproductive traits, reducing first clutch size, overall reproductive investment, egg lipid content, and subsequent larval hatching. These responses varied little across latitude but somewhat among populations in terms of egg size, protein content, and larval hatching success. Several reproductive parameters, but not Hsp70 expression, exhibited heritable variation among full-sib families. Rather than large-scale clinal geographic variation, our study suggests some local geographic population differentiation in the ability of yellow dung flies to buffer the impact of heat stress on reproductive performance.


Asunto(s)
Dípteros/fisiología , Respuesta al Choque Térmico , Adaptación Fisiológica , Animales , Frío , Europa (Continente) , Femenino , Geografía , Proteínas HSP70 de Choque Térmico/metabolismo , Calor , Larva/fisiología , Masculino , Reproducción , Caracteres Sexuales
15.
J Insect Physiol ; 106(Pt 3): 179-188, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29038013

RESUMEN

While single stress responses are fairly well researched, multiple, interactive stress responses are not-despite the obvious importance thereof. Here, using D. melanogaster, we investigated the effects of simultaneous exposures to low O2 (hypoxia) and varying thermal conditions on mortality rates, estimates of thermal tolerance and the transcriptome. We used combinations of 21 (normoxia), 10 or 5kPa O2 with control (23°C), cold (4°C) or hot (31°C) temperature exposures before assaying chill coma recovery time (CCRT) and heat knock down time (HKDT) as measures of cold and heat tolerance respectively. We found that mortality was significantly affected by temperature, oxygen partial pressure (PO2) and the interaction between the two. Cold treatments resulted in low mortality (<5%), regardless of PO2 treatment; while hot treatments resulted in higher mortality (∼20%), especially at 5kPa O2 which was lethal for most flies (∼80%). Both CCRT and HKDT were significantly affected by temperature, but not PO2, of the treatments, and the interaction of temperature and PO2 was non-significant. Hot treatments led to significantly longer CCRT, and shorter HKDT in comparison to cold treatments. Global gene expression profiling provided the first transcriptome level response to the combined stress of PO2 and temperature, showing that stressful treatments resulted in higher mortality and induced transcripts that were associated with protein kinases, catabolic processes (proteases, hydrolases, peptidases) and membrane function. Several genes and pathways that may be responsible for the protective effects of combined PO2 and cold treatments were identified. We found that urate oxidase was upregulated in all three cold treatments, regardless of the PO2. Small heat shock proteins Hsp22 and Hsp23 were upregulated after both 10 and 21kPa O2-hot treatments. Collectively, the data from PO2-hot treatments suggests that hypoxia does exacerbate heat stress, through an as yet unidentified mechanism. Hsp70B and an unannotated transcript (CG6733) were significantly differentially expressed after 5kPa O2-cold and 10kPa O2-hot treatments relative to their controls. Downregulation of these transcripts was correlated with reduced thermal tolerance (longer CCRT and shorter HKDT), suggesting that these genes may be important candidates for future research.


Asunto(s)
Drosophila melanogaster/metabolismo , Oxígeno/fisiología , Estrés Fisiológico , Termotolerancia , Transcriptoma , Animales , Masculino , Mortalidad , Fenotipo
16.
Evolution ; 71(6): 1627-1642, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28369831

RESUMEN

Mechanistic trade-offs between traits under selection can shape and constrain evolutionary adaptation to environmental stressors. However, our knowledge of the quantitative and qualitative overlap in the molecular machinery among stress tolerance traits is highly restricted by the challenges of comparing and interpreting data between separate studies and laboratories, as well as to extrapolating between different levels of biological organization. We investigated the expression of the constitutive proteome (833 proteins) of 35 Drosophila melanogaster replicate populations artificially selected for increased resistance to six different environmental stressors. The evolved proteomes were significantly differentiated from replicated control lines. A targeted analysis of the constitutive proteomes revealed a regime-specific selection response among heat-shock proteins, which provides evidence that selection also adjusts the constitutive expression of these molecular chaperones. Although the selection response in some proteins was regime specific, the results were dominated by evidence for a "common stress response." With the exception of high temperature survival, we found no evidence for negative correlations between environmental stress resistance traits, meaning that evolutionary adaptation is not constrained by mechanistic trade-offs in regulation of functional important proteins. Instead, standing genetic variation and genetic trade-offs outside regulatory domains likely constrain the evolutionary responses in natural populations.


Asunto(s)
Adaptación Fisiológica , Proteómica , Selección Genética , Aclimatación , Animales , Drosophila melanogaster/genética
17.
Ecol Evol ; 7(8): 2716-2724, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28428862

RESUMEN

Adaptation of natural populations to variable environmental conditions may occur by changes in trait means and/or in the levels of plasticity. Theory predicts that environmental heterogeneity favors plasticity of adaptive traits. Here we investigated the performance in several traits of three sympatric Drosophila species freshly collected in two environments that differ in the heterogeneity of environmental conditions. Differences in trait means within species were found in several traits, indicating that populations differed in their evolutionary response to the environmental conditions of their origin. Different species showed distinct adaptation with a very different role of plasticity across species for coping with environmental changes. However, geographically distinct populations of the same species generally displayed the same levels of plasticity as induced by fluctuating thermal regimes. This indicates a weak and trait-specific effect of environmental heterogeneity on plasticity. Furthermore, similar levels of plasticity were found in a laboratory-adapted population of Drosophila melanogaster with a common geographic origin but adapted to the laboratory conditions for more than 100 generations. Thus, this study does not confirm theoretical predictions on the degree of adaptive plasticity among populations in relation to environmental heterogeneity but shows a very distinct role of species-specific plasticity.

18.
Sci Rep ; 6: 32856, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27619175

RESUMEN

Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.


Asunto(s)
Aclimatación/fisiología , Anaerobiosis/fisiología , Metabolismo Basal/fisiología , Respuesta al Choque por Frío/fisiología , Mariposas Nocturnas/fisiología , Oxígeno/metabolismo , Aminoácidos/metabolismo , Animales , Frío , Homeostasis/fisiología , Larva/fisiología , Metabolómica
19.
J Exp Biol ; 219(Pt 17): 2726-32, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27353229

RESUMEN

The ability of insects to cope with stressful temperatures through adaptive plasticity has allowed them to thrive under a wide range of thermal conditions. Developmental plasticity is generally considered to be a non-reversible phenotypic change, e.g. in morphological traits, while adult acclimation responses are often considered to be reversible physiological responses. However, physiologically mediated thermal acclimation might not follow this general prediction. We investigated the magnitude and rate of reversibility of developmental thermal plasticity responses in heat and cold tolerance of adult flies, using a full factorial design with two developmental and two adult temperatures (15 and 25°C). We show that cold tolerance attained during development is readily adjusted to the prevailing conditions during adult acclimation, with a symmetric rate of decrease or increase. In contrast, heat tolerance is only partly reversible during acclimation and is thus constrained by the temperature during development. The effect of adult acclimation on heat tolerance was asymmetrical, with a general loss of heat tolerance with age. Surprisingly, the decline in adult heat tolerance at 25°C was decelerated in flies developed at low temperatures. This result was supported by correlated responses in two senescence-associated traits and in accordance with a lower rate of ageing after low temperature development, suggesting that physiological age is not reset at eclosion. The results have profound ecological consequences for populations, as optimal developmental temperatures will be dependent on the thermal conditions faced in the adult stage and the age at which they occur.


Asunto(s)
Envejecimiento/fisiología , Frío , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Calor , Termotolerancia/fisiología , Aclimatación/fisiología , Animales , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...