Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Physiol ; 597(24): 5899-5914, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31650562

RESUMEN

KEY POINTS: Wnt ligands belonging to both canonical and non-canonical Wnt pathways regulate membrane potential signifying a very early event in the signal transduction. Wnts activate K+ currents by elevating intracellular Ca2+ and trigger Ca2+ release from intracellular stores. Control of potential by Wnt ligands has significant implications for gene transcription and opens up a novel avenue to interfere with this critical pathway. ABSTRACT: The Wnt signalling network determines gene transcription with free intracellular Ca2+ ( Cai2+ ) and ß-catenin as major intracellular signal transducers. Despite its critical importance during development and disease, many of the basic mechanisms of Wnt signal activation remain unclear. Here we show by single cell recording and simultaneous Cai2+ imaging in mammalian prostate cancer cells that an early step in the signal cascade is direct action on the cell membrane potential. We show that Wnt ligands 5A, 9B and 10B rapidly hyperpolarized the cells by activating K+ current by Ca2+ release from intracellular stores. Medium-throughput multi-well recordings showed responses to Wnts at concentrations of 2 nm. We identify a putative target for early events as a TRPM channel. Wnts thus act as ligands for ion channel activation in mammalian cells and membrane potential is an early indicator of control of transcription.


Asunto(s)
Señalización del Calcio , Potenciales de la Membrana , Vía de Señalización Wnt , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Humanos , Células MCF-7 , Canales de Potasio/metabolismo , Canales Catiónicos TRPM/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/farmacología
2.
J Pharmacol Exp Ther ; 369(1): 152-162, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30655298

RESUMEN

Class II antiarrhythmics or ß-blockers are antisympathetic nervous system agents that act by blocking ß-adrenoceptors. Despite their common clinical use, little is known about the effects of ß-blockers on free intracellular calcium (Ca2+ i), an important cytosolic second messenger and a key regulator of cell function. We investigated the role of four chemical analogs, commonly prescribed ß-blockers (atenolol, metoprolol, propranolol, and sotalol), on Ca2+ i release and whole-cell currents in mammalian cancer cells (PC3 prostate cancer and MCF7 breast cancer cell lines). We discovered that only propranolol activated free Ca2+ i release with distinct kinetics, whereas atenolol, metoprolol, and sotalol did not. The propranolol-induced Ca2+ i release was significantly inhibited by the chelation of extracellular calcium with ethylene glycol tetraacetic acid (EGTA) and by dantrolene, an inhibitor of the endoplasmic reticulum (ER) ryanodine receptor channels, and it was completely abolished by 2-aminoethoxydiphenyl borate, an inhibitor of the ER inositol-1,4,5-trisphosphate (IP3) receptor channels. Exhaustion of ER stores with 4-chloro-m-cresol, a ryanodine receptor activator, or thapsigargin, a sarco/ER Ca2+ ATPase inhibitor, precluded the propranolol-induced Ca2+ i release. Finally, preincubation of cells with sotalol or timolol, nonselective blockers of ß-adrenoceptors, also reduced the Ca2+ i release activated by propranolol. Our results show that different ß-blockers have differential effects on whole-cell currents and free Ca2+ i release and that propranolol activates store-operated Ca2+ i release via a mechanism that involves calcium-induced calcium release and putative downstream transducers such as IP3 The differential action of class II antiarrhythmics on Ca2+ i release may have implications on the pharmacology of these drugs.


Asunto(s)
Antiarrítmicos/farmacología , Calcio/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Humanos , Cinética , Células MCF-7 , Células PC-3 , Propranolol/farmacología , Receptores Adrenérgicos beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA