Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30406, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726180

RESUMEN

Electroencephalogram (EEG) signals are critical in interpreting sensorimotor activities for predicting body movements. However, their efficacy in identifying intralimb movements, such as the dorsiflexion and plantar flexion of the foot, remains suboptimal. This study aims to explore whether various EEG signal quantities can effectively recognize intralimb movements to facilitate the development of Brain-Computer Interface (BCI) devices for foot rehabilitation. This research involved twenty-two healthy, right-handed participants. EEG data were collected using 21 electrodes positioned over the motor cortex, while two electromyography (EMG) electrodes recorded the onset of ankle joint movements. The study focused on analyzing slow cortical potential (SCP) and sensorimotor rhythms (SMR) in alpha and beta bands from the EEG. Five key features-fourth-order Autoregressive feature, variance, waveform length, standard deviation, and permutation entropy-were extracted. A modified Recurrent Neural Network (RNN) including Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms was developed for movement recognition. These were compared against conventional machine learning algorithms, including nonlinear Support Vector Machine (SVM) and k Nearest Neighbourhood (kNN) classifiers. The performance of the proposed models was assessed using two data schemes: within-subject and across-subjects. The findings demonstrated that the GRU and LSTM models significantly outperformed traditional machine learning algorithms in recognizing different EEG signal quantities for intralimb movement. The study indicates that deep learning models, particularly GRU and LSTM, hold superior potential over standard machine learning techniques in identifying intralimb movements using EEG signals. Where the accuracies of LSTM for within and across subjects were 98.87 ± 1.80 % and 87.38 ± 0.86 % respectively. Whereas the accuracy of GRU within and across subjects were 99.18 ± 1.28 % and 86.44 ± 0.69 % respectively. This advancement could significantly benefit the development of BCI devices aimed at foot rehabilitation, suggesting a new avenue for enhancing physical therapy outcomes.

2.
Appl Ergon ; 96: 103497, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34139374

RESUMEN

This study aims to evaluate the effect of workstation type on the neural and vascular networks of the prefrontal cortex (PFC) underlying the cognitive activity involved during mental stress. Workstation design has been reported to affect the physical and mental health of employees. However, while the functional effects of ergonomic workstations have been documented, there is little research on the influence of workstation design on the executive function of the brain. In this study, 23 healthy volunteers in ergonomic and non-ergonomic workstations completed the Montreal imaging stress task, while their brain activity was recorded using the synchronized measurement of electroencephalography and functional near-infrared spectroscopy. The results revealed desynchronization in alpha rhythms and oxygenated hemoglobin, as well as decreased functional connectivity in the PFC networks at the non-ergonomic workstations. Additionally, a significant increase in salivary alpha-amylase activity was observed in all participants at the non-ergonomic workstations, confirming the presence of induced stress. These findings suggest that workstation design can significantly impact cognitive functioning and human capabilities at work. Therefore, the use of functional neuroimaging in workplace design can provide critical information on the causes of workplace-related stress.


Asunto(s)
Acoplamiento Neurovascular , Electroencefalografía , Humanos , Corteza Prefrontal , Espectroscopía Infrarroja Corta , Lugar de Trabajo
3.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799722

RESUMEN

This study aims to investigate the effects of workplace noise on neural activity and alpha asymmetries of the prefrontal cortex (PFC) during mental stress conditions. Workplace noise exposure is a pervasive environmental pollutant and is negatively linked to cognitive effects and selective attention. Generally, the stress theory is assumed to underlie the impact of noise on health. Evidence for the impacts of workplace noise on mental stress is lacking. Fifteen healthy volunteer subjects performed the Montreal imaging stress task in quiet and noisy workplaces while their brain activity was recorded using electroencephalography. The salivary alpha-amylase (sAA) was measured before and immediately after each tested workplace to evaluate the stress level. The results showed a decrease in alpha rhythms, or an increase in cortical activity, of the PFC for all participants at the noisy workplace. Further analysis of alpha asymmetry revealed a greater significant relative right frontal activation of the noisy workplace group at electrode pairs F4-F3 but not F8-F7. Furthermore, a significant increase in sAA activity was observed in all participants at the noisy workplace, demonstrating the presence of stress. The findings provide critical information on the effects of workplace noise-related stress that might be neglected during mental stress evaluations.


Asunto(s)
Electroencefalografía , Lugar de Trabajo , Ritmo alfa , Atención , Lóbulo Frontal , Humanos , Estrés Psicológico
4.
Hum Factors ; 63(7): 1230-1255, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32286888

RESUMEN

OBJECTIVE: The purpose of this study is to examine the effect of the workstation type on the severity of mental stress by means of measuring prefrontal cortex (PFC) activation using functional near-infrared spectroscopy. BACKGROUND: Workstation type is known to influence worker's health and performance. Despite the practical implications of ergonomic workstations, limited information is available regarding their impact on brain activity and executive functions. METHOD: Ten healthy participants performed a Montreal imaging stress task (MIST) in ergonomic and nonergonomic workstations to investigate their effects on the severity of the induced mental stress. RESULTS: Cortical hemodynamic changes in the PFC were observed during the MIST in both the ergonomic and nonergonomic workstations. However, the ergonomic workstation exhibited improved MIST performance, which was positively correlated with the cortical activation on the right ventrolateral and the left dorsolateral PFC, as well as a marked decrease in salivary alpha-amylase activity compared with that of the nonergonomic workstation. Further analysis using the NASA Task Load Index revealed a higher weighted workload score in the nonergonomic workstation than that in the ergonomic workstation. CONCLUSION: The findings suggest that ergonomic workstations could significantly improve cognitive functioning and human capabilities at work compared to a nonergonomic workstation. APPLICATION: Such a study could provide critical information on workstation design and development of mental stress that can be overlooked during traditional workstation design and mental stress assessments.


Asunto(s)
Corteza Prefrontal , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Estrés Psicológico , Análisis y Desempeño de Tareas , Carga de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...