Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 643: 123270, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37499773

RESUMEN

Hyaluronic acid (HA) coated irinotecan loaded lignin nanoparticles (HDLNPs) were synthesized using ionic interaction method. Optimized nanoparticles were characterized for their active chemotherapeutic targeting potential to CD44 receptors overly-expressed on cancer cells. Blood component interaction studies supported hemocompatible nature of HDLNPs and also demonstrated their sustained plasma residence property. Cell anti-proliferation and mitochondrial depolarization studies on HT-29 cells suggest significantly (p < 0.01) improved chemotherapeutic efficacy of HDLNPs. In vitro cell based studies showed that nanoparticles have retained antioxidant activity of lignin that can prevent cancer relapse. In vivo biodistribution studies in tumor-bearing Balb/c mice confirmed improved drug localization in tumor site for longer duration. Tumor regression and histopathological studies indicated the efficacy ofligand-assisted targeting chemotherapy over the conventional therapy. Hematological and biochemical estimation suggested that irinotecan-associated myelosuppression, liver steatosis and rare kidney failure can be avoided by its encapsulation in HA-coated lignin nanoparticles. HDLNPs were found to be stable over a period of 12 months.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Nanopartículas , Ratones , Animales , Irinotecán/farmacología , Lignina , Distribución Tisular , Neoplasias del Colon/tratamiento farmacológico , Nanopartículas/química , Ácido Hialurónico/química , Receptores de Hialuranos/metabolismo , Línea Celular Tumoral , Antineoplásicos/química
2.
J Drug Target ; 30(7): 709-725, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35321629

RESUMEN

Various preclinical and clinical studies exhibited the potential of cannabis against various diseases, including cancer and related pain. Subsequently, many efforts have been made to establish and develop cannabis-related products and make them available as prescription products. Moreover, FDA has already approved some cannabis-related products, and more advancement in this aspect is still going on. However, the approved product of cannabis is in oral dosage form, which exerts various limitations to achieve maximum therapeutic effects. A considerable translation is on a hike to improve bioavailability, and ultimately, the therapeutic efficacy of cannabis by the employment of nanotechnology. Besides the well-known psychotropic effects of cannabis upon the use at high doses, literature has also shown the importance of cannabis and its constituents in minimising the lethality of cancer in the preclinical models. This review discusses the history of cannabis, its legal aspect, safety profile, the mechanism by which cannabis combats with cancer, and the advancement of clinical therapy by exploiting nanotechnology. A brief discussion related to the role of cannabinoid in various cancers has also been incorporated. Lastly, the information regarding completed and ongoing trials have also been elaborated.


Asunto(s)
Cannabinoides , Cannabis , Neoplasias , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Humanos , Nanotecnología , Neoplasias/tratamiento farmacológico , Dolor
3.
J Chromatogr Sci ; 60(4): 364-371, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-34080615

RESUMEN

Borage oil that is extracted from (Borago officinalis Linn.) is a well-known medicinal plant having various medicinal benefits. In this work, an affordable, simple, reliable, rapid and easily accessible high-performance thin-layer chromatography (HPTLC) method was developed for the estimation of gamma-linolenic acid (GLA) in borage oil. HPTLC method employs thin-layer chromatography (TLC) aluminum plates precoated with silica gel (G60F254) as the stationary phase, and the mixture of hexane:toulene:glacial acetic acid (3:7:1, v/v/v) was used as the mobile phase. Densitometric analysis of the TLC plates was carried out at 200 nm. The developed method showed well-resolved spots with retention factor (Rf) value of 0.53 ± 0.04 for GLA. Various experimental conditions like saturation time for chamber, solvent phase migration and width of the band were studied intensely for selecting the optimum conditions. The method validation was performed for parameters like linearity, accuracy, specificity and precision. The values of limit of detection and limit of quantification for GLA were found to be 0.221 and 0.737 µg/band, respectively. In nutshell, the developed HPTLC method was found to be highly sensitive for the estimation of GLA in the herbal oil samples and formulations.


Asunto(s)
Antioxidantes , Ácido gammalinolénico , Cromatografía en Capa Delgada/métodos , Aceites de Plantas
4.
Bioorg Chem ; 116: 105358, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34544029

RESUMEN

Dual TK inhibitors have shown significant clinical effects against many tumors, but with unmanageable side effects. Design approach and selectivity of these inhibitors plays substantial role in their potency and side-effects. Understanding the homology of binding sites in targeted receptors, and involvement of signaling proteins after the inhibition might help in producing less toxic but effective inhibitors. Herein, we designed benzylideneindolon-2-one derivatives based on homology modeling in binding sites of VEGFR-2 and EGFR receptors as dual- inhibitor potent anticancer compounds with high selectivity. The benzylideneindolon-2-one derivatives were found to possess conformational switch in form of oxindole, substituted at 2-benzimidazole. Within synthesized compounds, 5b was found most active in in-vitro enzyme inhibition assay against VEGFR-2 and EGFR with highest IC50 value of 6.81 ± 2.55 and 13.04 ± 4.07 nM, respectively. Interestingly, cytotoxicity studies revealed selective toxicity of compound 5b against proliferation of A-431 cell lines (over expressed VEGFR-2 and EGFR) with GI50 value of 0.9 ± 0.66 µM. However, the compounds showed mild to moderate activity in all other cancer cell line in the range of 0.2-100 µM. Further mode of action studies by flow cytometry and western blot on A-431 indicated that they work via apoptosis at S- phase following Bcl/Bax pathway, and cell migration via MMP9. 5b not only suppressed tumor growth but also improved vandetanib associated with weight loss toxicity. Moreover, 5b was found safer than sunitinib and erlotinib with LD50 of 500 mg/kg body weight. These results propose 5b as potential anti-tumor drug with safer profile of conventional inhibitors of VEGFR-2 and EGFR for solid tumors.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Oxindoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Estructura Molecular , Oxindoles/síntesis química , Oxindoles/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Curr Drug Metab ; 22(14): 1087-1102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33388016

RESUMEN

Glioblastoma multiforme (GBM) is a typical category of the most common and aggressive brain tumors, with a high incidence in older adults, particularly in males. Although the etiology of GBM has not been fully elucidated, yet it is characterized by highly proliferative activity in the glial cells. Its complete resection is impossible, and radiotherapy is not always efficient for complete relief. Thus, GBM remains a therapeutic challenge in neurooncology as there is no treatment that provides significant improvement in the survival rate of patients. In this regard, the identification of newer drug therapy for the treatment of GBM is gaining popularity. However, identifying new targets and developing new leads for screening suitable drug candidates require the investment of resources like time, money, and efforts. It has been observed in many research studies that the use of polyunsaturated fatty acids (PUFAs) as therapeutic moieties for cancer treatment has yielded significant interest owing to their cost-effective availability, limited side effects, and insensitivity towards drug resistance. Nevertheless, the implications of nanostructured therapeutic systems in delivering the PUFAs can provide significant improvement in their biopharmaceutical performance and antitumor activity over the existing alkylating agents used as chemotherapeutic drugs in GBM. Currently, various studies have shown that PUFAs, especially γ-linolenic acid (GLA), have selective tumoricidal action and the ability to reduce antioxidant contents of the glioma tumor cells. In this regard, the present review endeavors to provide an insight into the applications of nanomedicinal drug carriers used for delivering the PUFAs for the effective treatment of GBM and associated diseases.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Ácidos Grasos Insaturados/administración & dosificación , Glioblastoma/tratamiento farmacológico , Anciano , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Ácidos Grasos Insaturados/farmacología , Humanos , Masculino , Nanoestructuras
6.
Drug Des Devel Ther ; 14: 2237-2247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606594

RESUMEN

INTRODUCTION: Ziprasidone (ZP) is a novel atypical antipsychotic agent effective in the treatment of positive and negative symptoms of schizophrenia with low chances for extrapyramidal side effects (EPs) and cognitive deficits. ZP possesses poor oral bioavailability (~50%), short biological half-life (~2.5 h) and due to extensive first-pass metabolism, a repeated dose is administered which makes the therapy non-adherent, leading to patient non-compliance. Therefore, this is a first report of developing parenteral ZP loaded sustained release phospholipid based phase-transition system (ZP-LPS). METHODS: The ZP-LPS system was formulated by mixing of biocompatible materials including phospholipid E 80, medium chain triglyceride (MCT) and ethanol. Optimization was done by aqueous titration method using pseudo-ternary phase diagram and dynamic rheological measurements. In vivo depot formation was confirmed by gamma scintigraphy after subcutaneous injection. Biodegradation and biocompatibility studies were performed for its safety evaluation. Finally, the efficacy of the formulation was assessed by Morris water maze (MWM) test and dizocilpine (MK-801) was used to induce schizophrenia in Sprague-Dawley rats. RESULTS: Optimized ZP-LPS showed rapid gelation (2 min), highest change in viscosity (~48000 mPa.s) and sustained release of ZP over a period of 1 month. Gamma scintigraphy depicted that the low-viscosity ZP-LPS system undergo rapid in situ gelation. Biodegradation and biocompatibility studies revealed gradual degradation in size of depot over a period of 28 days without any inflammation at the injection site. In MWM test, escape latency, time spent and total distance in target quadrant were significantly improved (p < 0.001) in the ZP-LPS group in comparison to the MK-801 group when evaluated at day 0, day 7 and day 28. However, significant improvement (p < 0.001) was observed only at day 0 in ZP suspension group. CONCLUSION: The overall result indicates that the novel ZP-LPS system is safe, biodegradable, and effective for the management of schizophrenia.


Asunto(s)
Antipsicóticos/uso terapéutico , Preparaciones de Acción Retardada/uso terapéutico , Lípidos/uso terapéutico , Piperazinas/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Tiazoles/uso terapéutico , Animales , Antipsicóticos/química , Antipsicóticos/farmacocinética , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Lípidos/química , Lípidos/farmacocinética , Masculino , Piperazinas/química , Piperazinas/farmacocinética , Ratas , Ratas Sprague-Dawley , Tiazoles/química , Tiazoles/farmacocinética
7.
Colloids Surf B Biointerfaces ; 187: 110628, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31753617

RESUMEN

Doxorubicin (DOX) is commonly used for the treatment of many types of cancers but its cardiotoxicity, owing to free radical formation, limits its clinical use. Hesperidin (HES), a flavanone glycoside, has been shown to exert multiple pharmacological actions including cardioprotective effects. Herein, we aim to formulate HES loaded solid lipid nanoparticles (SLNs) using supercritical antisolvent (SAS) technology to improve the oral delivery of HES. Process parameters were optimized to produce small size (175.3 ±â€¯3.6 nm) HES-SLNs with high encapsulation efficiency (87.6 ±â€¯3.8 %). DSC and XRD showed that HES is amorphously dispersed in SLNs. Compared to HES, HES-SLNs resulted in a nearly 20-fold increase in aqueous solubility and a nearly 5-fold increase in apparent permeability. Pharmacokinetics in rats revealed nearly 4.5-fold higher bioavailability of HES from SLN formulation compared to HES suspension. Data showed that HES-SLN significantly attenuated DOX-induced cardiotoxicity through lowering creatine kinase-muscle/brain, cardiac troponin I and improving histopathological scores as compared to the DOX group. HES-SLN also decreased malondialdehyde, increased catalase and superoxide dismutase of rats' heart to levels relatively comparable to control. Marked reductions in caspase-3 were also observed following HES-SLN treatment. Conclusively, these results describe a cardioprotective effect for HES-SLN against DOX-induced cardiotoxicity likely facilitated via suppression of oxidative stress and apoptosis.


Asunto(s)
Cardiotónicos/farmacología , Hesperidina/farmacología , Lípidos/química , Nanopartículas/química , Solventes/química , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Cardiotónicos/farmacocinética , Cardiotoxicidad/patología , Caspasa 3/metabolismo , Corazón/efectos de los fármacos , Hesperidina/farmacocinética , Masculino , Miocardio/patología , Nanopartículas/ultraestructura , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Permeabilidad , Ratas Wistar , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...