Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Genom ; 3(7): 100346, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37492099

RESUMEN

A primary obstacle in translating genetic associations with disease into therapeutic strategies is elucidating the cellular programs affected by genetic risk variants and effector genes. Here, we introduce LipocyteProfiler, a cardiometabolic-disease-oriented high-content image-based profiling tool that enables evaluation of thousands of morphological and cellular profiles that can be systematically linked to genes and genetic variants relevant to cardiometabolic disease. We show that LipocyteProfiler allows surveillance of diverse cellular programs by generating rich context- and process-specific cellular profiles across hepatocyte and adipocyte cell-state transitions. We use LipocyteProfiler to identify known and novel cellular mechanisms altered by polygenic risk of metabolic disease, including insulin resistance, fat distribution, and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward and reverse deep phenotypic profiling in lipocytes and provides a framework for the unbiased identification of causal relationships between genetic variants and cellular programs relevant to human disease.

2.
Diabetologia ; 66(7): 1289-1305, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37171500

RESUMEN

AIMS/HYPOTHESIS: PPARGC1A encodes peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), a central regulator of energy metabolism and mitochondrial function. A common polymorphism in PPARGC1A (rs8192678, C/T, Gly482Ser) has been associated with obesity and related metabolic disorders, but no published functional studies have investigated direct allele-specific effects in adipocyte biology. We examined whether rs8192678 is a causal variant and reveal its biological function in human white adipose cells. METHODS: We used CRISPR-Cas9 genome editing to perform an allelic switch (C-to-T or T-to-C) at rs8192678 in an isogenic human pre-adipocyte white adipose tissue (hWAs) cell line. Allele-edited single-cell clones were expanded and screened to obtain homozygous T/T (Ser482Ser), C/C (Gly482Gly) and heterozygous C/T (Gly482Ser) isogenic cell populations, followed by functional studies of the allele-dependent effects on white adipocyte differentiation and mitochondrial function. RESULTS: After differentiation, the C/C adipocytes were visibly less BODIPY-positive than T/T and C/T adipocytes, and had significantly lower triacylglycerol content. The C allele presented a dose-dependent lowering effect on lipogenesis, as well as lower expression of genes critical for adipogenesis, lipid catabolism, lipogenesis and lipolysis. Moreover, C/C adipocytes had decreased oxygen consumption rate (OCR) at basal and maximal respiration, and lower ATP-linked OCR. We determined that these effects were a consequence of a C-allele-driven dysregulation of PGC-1α protein content, turnover rate and transcriptional coactivator activity. CONCLUSIONS/INTERPRETATION: Our data show allele-specific causal effects of the rs8192678 variant on adipogenic differentiation. The C allele confers lower levels of PPARGC1A mRNA and PGC-1α protein, as well as disrupted dynamics of PGC-1α turnover and activity, with downstream effects on cellular differentiation and mitochondrial function. Our study provides the first experimentally deduced insights on the effects of rs8192678 on adipocyte phenotype.


Asunto(s)
Adipocitos Blancos , Lipogénesis , Humanos , Alelos , Lipogénesis/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Adipocitos Blancos/metabolismo , Diferenciación Celular/genética
3.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876906

RESUMEN

Genetic variation at the MTIF3 (Mitochondrial Translational Initiation Factor 3) locus has been robustly associated with obesity in humans, but the functional basis behind this association is not known. Here, we applied luciferase reporter assay to map potential functional variants in the haplotype block tagged by rs1885988 and used CRISPR-Cas9 to edit the potential functional variants to confirm the regulatory effects on MTIF3 expression. We further conducted functional studies on MTIF3-deficient differentiated human white adipocyte cell line (hWAs-iCas9), generated through inducible expression of CRISPR-Cas9 combined with delivery of synthetic MTIF3-targeting guide RNA. We demonstrate that rs67785913-centered DNA fragment (in LD with rs1885988, r2 > 0.8) enhances transcription in a luciferase reporter assay, and CRISPR-Cas9-edited rs67785913 CTCT cells show significantly higher MTIF3 expression than rs67785913 CT cells. Perturbed MTIF3 expression led to reduced mitochondrial respiration and endogenous fatty acid oxidation, as well as altered expression of mitochondrial DNA-encoded genes and proteins, and disturbed mitochondrial OXPHOS complex assembly. Furthermore, after glucose restriction, the MTIF3 knockout cells retained more triglycerides than control cells. This study demonstrates an adipocyte function-specific role of MTIF3, which originates in the maintenance of mitochondrial function, providing potential explanations for why MTIF3 genetic variation at rs67785913 is associated with body corpulence and response to weight loss interventions.


Asunto(s)
Adipocitos , Obesidad , Humanos , Adipocitos/metabolismo , Causalidad , Línea Celular , Sistemas CRISPR-Cas , Obesidad/genética , Obesidad/metabolismo , Pérdida de Peso
4.
J Sch Health ; 92(5): 474-484, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253219

RESUMEN

BACKGROUND: The financial costs and human resource requirements at the school and district level to implement a SARS-CoV-2 screening program are not well known. METHODS: A consortium of Massachusetts public K-12 schools was formed to implement and evaluate a range of SARS-CoV-2 screening approaches. Participating districts were surveyed weekly about their programs, including: type of assay used, individual vs. pooled screening, approaches to return of results and deconvolution of positive pools, number and type of personnel, and hours spent implementing the screening program, and hours spent on program implementation. RESULTS: In 21 participating districts, over 21 weeks from January to June 2021, the positivity rate was 0.0% to 0.21% among students and 0.0% to 0.13% among educators/staff. The average weekly cost to implement a screening program, including assay and personnel costs, was $17.00 per person tested; this was $46.68 for individual screenings and $15.61 for pooled screenings. The total weekly costs by district ranged from $1,644 to $93,486, and districts screened between 58 and 3675 people per week. CONCLUSIONS: Where screening is recommended for the 2021 to 2022 school year due to high COVID-19 incidence, understanding the human resources and finances required to implement screening will assist district policymakers in planning.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Tamizaje Masivo , Instituciones Académicas , Estudiantes
5.
Cell ; 183(3): 684-701.e14, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33058756

RESUMEN

Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.


Asunto(s)
Enfermedades Metabólicas/genética , MicroARNs/genética , Adipocitos Marrones/patología , Adiposidad , Alelos , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Dieta Alta en Grasa , Metabolismo Energético , Epigénesis Genética , Sitios Genéticos , Glucosa/metabolismo , Homeostasis , Humanos , Hipertrofia , Resistencia a la Insulina , Leptina/deficiencia , Leptina/metabolismo , Masculino , Mamíferos/genética , Ratones Endogámicos C57BL , Ratones Obesos , MicroARNs/metabolismo , Obesidad/genética , Oligonucleótidos/metabolismo , Especificidad de la Especie
6.
Nat Commun ; 9(1): 5380, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568279

RESUMEN

Genome-wide epigenomic maps have revealed millions of putative enhancers and promoters, but experimental validation of their function and high-resolution dissection of their driver nucleotides remain limited. Here, we present HiDRA (High-resolution Dissection of Regulatory Activity), a combined experimental and computational method for high-resolution genome-wide testing and dissection of putative regulatory regions. We test ~7 million accessible DNA fragments in a single experiment, by coupling accessible chromatin extraction with self-transcribing episomal reporters (ATAC-STARR-seq). By design, fragments are highly overlapping in densely-sampled accessible regions, enabling us to pinpoint driver regulatory nucleotides by exploiting differences in activity between partially-overlapping fragments using a machine learning model (SHARPR-RE). In GM12878 lymphoblastoid cells, we find ~65,000 regions showing enhancer function, and pinpoint ~13,000 high-resolution driver elements. These are enriched for regulatory motifs, evolutionarily-conserved nucleotides, and disease-associated genetic variants from genome-wide association studies. Overall, HiDRA provides a high-throughput, high-resolution approach for dissecting regulatory regions and driver nucleotides.


Asunto(s)
Regulación de la Expresión Génica , Técnicas Genéticas , Genoma Humano , Secuencias Reguladoras de Ácidos Nucleicos , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
7.
Proc Natl Acad Sci U S A ; 113(23): 6478-83, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27222581

RESUMEN

Many globular and structural proteins have repetitions in their sequences or structures. However, a clear relationship between these repeats and their contribution to the mechanical properties remains elusive. We propose a new approach for the design and production of synthetic polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions. Our designed sequences are based on a structural protein produced in squid suction cups that has a segmented copolymer structure with amorphous and crystalline domains. We produced segmented polypeptides with varying repeat number, while keeping the lengths and compositions of the amorphous and crystalline regions fixed. We showed that mechanical properties of these synthetic proteins could be tuned by modulating their molecular weights. Specifically, the toughness and extensibility of synthetic polypeptides increase as a function of the number of tandem repeats. This result suggests that the repetitions in native squid proteins could have a genetic advantage for increased toughness and flexibility.


Asunto(s)
Decapodiformes/genética , Péptidos , Proteínas , Secuencias Repetidas en Tándem , Animales , Fenómenos Mecánicos , Péptidos/química , Péptidos/genética , Proteínas/química , Proteínas/genética
8.
Proc Natl Acad Sci U S A ; 103(9): 3153-8, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16492761

RESUMEN

Rapid quantitative methods for characterizing small molecules, peptides, proteins, or RNAs in a broad array of cellular assays would allow one to discover new biological activities associated with these molecules and also provide a more comprehensive profile of drug candidates early in the drug development process. Here we describe a robotic system, termed the automated compound profiler, capable of both propagating a large number of cell lines in parallel and assaying large collections of molecules simultaneously against a matrix of cellular assays in a highly reproducible manner. To illustrate its utility, we have characterized a set of 1,400 kinase inhibitors in a panel of 35 activated tyrosine-kinase-dependent cellular assays in dose-response format in a single experiment. Analysis of the resulting multidimensional dataset revealed subclusters of both inhibitors and kinases with closely correlated activities. The approach also identified activities for the p38 inhibitor BIRB796 and the dual src/abl inhibitor BMS-354825 and exposed the expected side activities for Glivec/STI571, including cellular inhibition of c-kit and platelet-derived growth factor receptor. This methodology provides a powerful tool for unraveling the cellular biology and molecular pharmacology of both naturally occurring and synthetic chemical diversity.


Asunto(s)
Fosfotransferasas/antagonistas & inhibidores , Fosfotransferasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Robótica/métodos , Animales , Automatización , Línea Celular , Bases de Datos Factuales , Evaluación Preclínica de Medicamentos/métodos , Ratones , Fosfotransferasas/genética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Reproducibilidad de los Resultados , Relación Estructura-Actividad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...