Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Funct Integr Genomics ; 23(4): 311, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37751043

RESUMEN

Pigeon pea is an important protein-rich pulse crop. Identification of flowering master regulators in pigeon pea is highly imperative as indeterminacy and late flowering are impediments towards yield improvement. A genome-wide analysis was performed to explore flowering orthologous groups in pigeon pea. Among the 412 floral orthologs identified in pigeon pea, 148 genes belong to the meristem identity, photoperiod-responsive, and circadian clock-associated ortholog groups. Our comparative genomics study revealed purifying selection pressures (ka/ks) on floral orthologs, and duplication patterns and evolution through synteny with other model species. Phylogenetic analysis of floral genes substantiated a connection between pigeon pea plant architecture and flowering time as all the PEBP domain-containing genes belong to meristem identity floral networks of pigeon pea. Expression profiling of eleven major orthologs in contrasting determinate and indeterminate genotypes indicated that these orthologs might be involved in flowering regulation. Expression of floral inducer, FT, and floral repressor, TFL1, was non-comparable in indeterminate genotypes across all the developmental stages of pigeon pea. However, dynamic FT/TFL1 expression ratio detected in all tissues of both the genotypes suggested their role in floral transition. One TFL1 ortholog having high sequence conserveness across pigeon pea genotypes showed differential expression indicating genotype-dependent regulation of this ortholog. Presence of conserved 6mA-methylation patterns in light-responsive elements and in other cis-regulatory elements of FT and TFL1 across different plant genotypes indicated possible involvement of epigenetic regulation in flowering.


Asunto(s)
Cajanus , Cajanus/genética , Epigénesis Genética , Filogenia , Genotipo , Genómica
2.
Funct Integr Genomics ; 23(4): 305, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37726585

RESUMEN

The importance of gut sucrase in maintaining osmotic equilibrium and utilizing phloem contents as a carbon source has been widely investigated and proven in sap-sucking insects. In the present study, silencing of Aphis gossypii sucrase1 (Agsuc1) was carried out by double-stranded RNA (dsRNA), which would be lethal to it due to disruption of osmotic balance. The dsRNA corresponding to Agsuc1 was synthesized by two methods, i.e., in vitro synthesis using T7/SP6 RNA polymerase and in vivo synthesis by bacterial expression, i.e., Escherichia coli strain HT115 transformed with the L4440 vector system. Oral delivery of double-stranded Agsuc1 synthesized in vitro (dsAgsuc1) and in vivo (HT115Agsuc1) induced around 50% mortality in nymphs of A. gossypii. Moreover, the number of offspring produced by the survived aphids decreased by 39-43%. Parthenogenetic reproduction of the aphids is the critical factor for their fast population build-up, leading to yield losses of economic significance. Thus, the present study demonstrated that the silencing of the Agsuc1 gene reduced the aphid population by killing it and inhibited the population buildup by reducing the number of offspring produced by the survived aphids, likely to result in a significant reduction in crop damage. The production of dsRNA by bacterial expression is a cost-effective method. It has the potential to be used as a biopesticide. The sucrase gene is an excellent putative target gene for RNAi against A. gossypii. It could be used to develop a transgenic plant that produces dsAgsuc1 to keep A. gossypii populations below the economic threshold level.


Asunto(s)
Áfidos , ARN Bicatenario , Animales , ARN Bicatenario/genética , Áfidos/genética , Agentes de Control Biológico
3.
Mol Biotechnol ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37523020

RESUMEN

Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops. Development of transgenic plant using novel strategies to achieve durable resistance against the target insect.

4.
Front Plant Sci ; 14: 1133029, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875591

RESUMEN

Cold-induced sweetening (CIS) is an unwanted physiological phenomenon in which reducing sugars (RS) get accumulated in potato (Solanum tuberosum) upon cold storage. High RS content makes potato commercially unsuitable for processing due to the unacceptable brown color in processed products like chips, fries, etc., and the production of a potential carcinogen, acrylamide. UDP-glucose pyrophosphorylase (UGPase) catalyzes the synthesis of UDP-glucose towards the synthesis of sucrose and is also involved in the regulation of CIS in potato. The objective of the present work was RNAi-mediated downregulation of the StUGPase expression level in potato for the development of CIS tolerant potato. Hairpin RNA (hpRNA) gene construct was developed by placing UGPase cDNA fragment in sense and antisense orientation intervened by GBSS intron. Internodal stem explants (cv. Kufri Chipsona-4) were transformed with hpRNA gene construct, and 22 transgenic lines were obtained by PCR screening of putative transformants. Four transgenic lines showed the highest level of RS content reduction following 30 days of cold storage, with reductions in sucrose and RS (glucose & fructose) levels of up to 46% and 57.5%, respectively. Cold stored transgenic potato of these four lines produced acceptable chip colour upon processing. The selected transgenic lines carried two to five copies of the transgene. Northern hybridization revealed an accumulation of siRNA with a concomitant decrease in the StUGPase transcript level in these selected transgenic lines. The present work demonstrates the efficacy of StUGPase silencing in controlling CIS in potato, and the strategy can be employed for the development of CIS tolerant potato varieties.

5.
Artículo en Inglés | MEDLINE | ID: mdl-33782651

RESUMEN

BACKGROUND: The world pandemic COVID-19 caused by SARS-CoV-2 is currently claiming thousands of lives. Flavonoids abundantly present in the fruits and vegetables, especially quercetin, are shown to have antiviral activities. MAIN TEXT: This paper reviews the capability of the plant flavonoid quercetin to fight the novel coronavirus and the possibility for drug development based on this. The mode of action explaining the known pathways through which this molecule succeeds in the antiviral activity, action of quercetin on SARS-CoV-2 main protease 3CLpro, antiviral activities of its derivatives on human viruses, effect of combination of zinc co-factor along with quercetin in the COVID-19 treatment, and the regulation of miRNA genes involved in the viral pathogenesis are discussed. Proof for this concept is provided following the virtual screening using ten key enzymes of SARS-CoV-2 and assessing their interactions. Active residues in the 3D structures have been predicted using CASTp and were docked against quercetin. Key proteins 3CLpro, spike glycoprotein/ human ACE2-BOAT1 complex, RNA-dependent RNA polymerase, main peptidase, spike glycoprotein, RNA replicase, RNA binding protein, papain-like protease, SARS papain-like protease/ deubiquitinase, and complex of main peptidase with an additional Ala at the N-terminus of each protomer, have shown the binding energies ranging between - 6.71 and - 3.37 kcal/ Mol, showing that quercetin is a potential drug candidate inhibiting multiple SARS-CoV-2 enzymes. CONCLUSION: The antiviral properties of flavonoid and the molecular mechanisms involved are reviewed. Further, proof for this concept is given by docking of key proteins from SARS-CoV-2 with quercetin.

6.
ACS Omega ; 5(33): 20674-20683, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32875201

RESUMEN

Plants are challenged incessantly by several biotic and abiotic stresses during their entire growth period. As with other biotic stress factors, insect pests have also posed serious concerns related to yield losses due to which agricultural productivity is at stake. In plants, trait modification for crop improvement was initiated with breeding approaches followed by genetic engineering. However, stringent regulatory policies for risk assessment and lack of social acceptance for genetically modified crops worldwide have incited researchers toward alternate strategies. Genome engineering or genome editing has emerged as a new breeding technique with the ability to edit the genomes of plants, animals, microbes, and human beings. Several gene editing strategies are being executed with continuous emergence of variants. The scientific community has unraveled the utility of various editing tools from endonucleases to CRISPR/Cas in several aspects related to plant growth, development, and mitigation of stresses. The categorical focus on the development of tools and techniques including designing of binary vectors to facilitate ease in genome engineering are being pursued. Through this Review, we embark upon the conglomeration of various genome editing strategies that can be and are being used to design insect pest resistance in plants. Case studies and novel crop-based approaches that reiterate the successful use of these tools in insects as well as in plants are highlighted. Further, the Review also provides implications for the requirement of a specific regulatory framework and risk assessment of the edited crops. Genome editing toward insect pest management is here to stay, provided uncompromising efforts are made toward the identification of amiable target genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...