Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 291(11): 2423-2448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38451841

RESUMEN

Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).


Asunto(s)
Aminoácido Oxidorreductasas , Heterocromatina , Histonas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Histonas/metabolismo , Histonas/genética , Femenino , Heterocromatina/metabolismo , Heterocromatina/genética , Línea Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Regulación Neoplásica de la Expresión Génica , ADN Helicasas/genética , ADN Helicasas/metabolismo
2.
Mol Cell Proteomics ; 19(12): 1921-1936, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32868372

RESUMEN

Stroke remains a leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures in the hyper-acute phase of ischemic stroke is still a primary interest for translational research on stroke diagnosis, prognosis, and treatment. Data integration from high-throughput -omics techniques has become crucial to unraveling key interactions among different molecular elements in complex biological contexts, such as ischemic stroke. Thus, we used advanced data integration methods for a multi-level joint analysis of transcriptomics and proteomics data sets obtained from mouse brains at 2 h after cerebral ischemia. By modeling net-like correlation structures, we identified an integrated network of genes and proteins that are differentially expressed at a very early stage after stroke. We validated 10 of these deregulated elements in acute stroke, and changes in their expression pattern over time after cerebral ischemia were described. Of these, CLDN20, GADD45G, RGS2, BAG5, and CTNND2 were next evaluated as blood biomarkers of cerebral ischemia in mice and human blood samples, which were obtained from stroke patients and patients presenting stroke-mimicking conditions. Our findings indicate that CTNND2 levels in blood might potentially be useful for distinguishing ischemic strokes from stroke-mimicking conditions in the hyper-acute phase of the disease. Furthermore, circulating GADD45G content within the first 6 h after stroke could also play a key role in predicting poor outcomes in stroke patients. For the first time, we have used an integrative biostatistical approach to elucidate key molecules in the initial stages of stroke pathophysiology and highlight new notable molecules that might be further considered as blood biomarkers of ischemic stroke.


Asunto(s)
Biomarcadores/sangre , Encéfalo/metabolismo , Encéfalo/patología , Accidente Cerebrovascular Isquémico/sangre , Proteómica , Animales , Cateninas/sangre , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/sangre , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/genética , Masculino , Ratones Endogámicos C57BL , Pronóstico , Proteoma/metabolismo , Transcriptoma/genética , Catenina delta
3.
ACS Chem Biol ; 13(8): 2094-2105, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29966079

RESUMEN

Mutations or cellular conditions that destabilize the native protein conformation promote the population of partially unfolded conformations, which in many cases assemble into insoluble amyloid fibrils, a process associated with multiple human pathologies. Therefore, stabilization of protein structures is seen as an efficient way to prevent misfolding and subsequent aggregation. This has been suggested to be the underlying reason why proteins living in harsh environments, such as the extracellular space, have evolved disulfide bonds. The effect of protein disulfides on the thermodynamics and kinetics of folding has been extensively studied, but much less is known on its effect on aggregation reactions. Here, we designed a single point mutation that introduces a disulfide bond in the all-α FF domain, a protein that, despite being devoid of preformed ß-sheets, forms ß-sheet-rich amyloid fibrils. The novel and unique covalent bond in the FF domain dramatically increases its thermodynamic stability and folding speed. Nevertheless, these optimized properties cannot counteract the inherent aggregation propensity of the protein, thus indicating that a high global protein stabilization does not suffice to prevent amyloid formation unless it contributes to hide from exposure the specific regions that nucleate the aggregation reaction.


Asunto(s)
Amiloide/química , Pliegue de Proteína , Factores de Empalme de ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Disulfuros/química , Cinética , Modelos Moleculares , Agregado de Proteínas , Conformación Proteica , Dominios Proteicos , Estabilidad Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...