Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Cell Death Dis ; 13(12): 1038, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513635

RESUMEN

Prenatal inflammatory insults accompany prematurity and provoke diffuse white matter injury (DWMI), which is associated with increased risk of neurodevelopmental pathologies, including autism spectrum disorders. DWMI results from maturation arrest of oligodendrocyte precursor cells (OPCs), a process that is poorly understood. Here, by using a validated mouse model of OPC maturation blockade, we provide the genome-wide ID card of the effects of neuroinflammation on OPCs that reveals the architecture of global cell fate issues underlining their maturation blockade. First, we find that, in OPCs, neuroinflammation takes advantage of a primed epigenomic landscape and induces abnormal overexpression of genes of the immune/inflammatory pathways: these genes strikingly exhibit accessible chromatin conformation in uninflamed OPCs, which correlates with their developmental, stage-dependent expression, along their normal maturation trajectory, as well as their abnormal upregulation upon neuroinflammation. Consistently, we observe the positioning on DNA of key transcription factors of the immune/inflammatory pathways (IRFs, NFkB), in both unstressed and inflamed OPCs. Second, we show that, in addition to the general perturbation of the myelination program, neuroinflammation counteracts the physiological downregulation of the cell cycle pathway in maturing OPCs. Neuroinflammation therefore perturbs cell identity in maturing OPCs, in a global manner. Moreover, based on our unraveling of the activity of genes of the immune/inflammatory pathways in prenatal uninflamed OPCs, the mere suppression of these proinflammatory mediators, as currently proposed in the field, may not be considered as a valid neurotherapeutic strategy.


Asunto(s)
Oligodendroglía , Sustancia Blanca , Ratones , Animales , Embarazo , Femenino , Oligodendroglía/metabolismo , Ratones Transgénicos , Sustancia Blanca/patología , Epigenómica , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Diferenciación Celular , Ciclo Celular/genética , Epigénesis Genética
3.
Nat Commun ; 13(1): 7002, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385105

RESUMEN

Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.


Asunto(s)
Proteína de Unión a CREB , Proteínas de Choque Térmico , Trastornos del Neurodesarrollo , Síndrome de Rubinstein-Taybi , Factores de Transcripción , Humanos , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo
4.
Cell Stress Chaperones ; 26(5): 819-833, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34331200

RESUMEN

Cancer cells rely on heat shock proteins (HSPs) for growth and survival. Especially HSP90 has multiple client proteins and plays a critical role in malignant transformation, and therefore different types of HSP90 inhibitors are being developed. The bioactive natural compound gambogic acid (GB) is a prenylated xanthone with antitumor activity, and it has been proposed to function as an HSP90 inhibitor. However, there are contradicting reports whether GB induces a heat shock response (HSR), which is cytoprotective for cancer cells and therefore a potentially problematic feature for an anticancer drug. In this study, we show that GB and a structurally related compound, called gambogenic acid (GBA), induce a robust HSR, in a thiol-dependent manner. Using heat shock factor 1 (HSF1) or HSF2 knockout cells, we show that the GB or GBA-induced HSR is HSF1-dependent. Intriguingly, using closed form ATP-bound HSP90 mutants that can be co-precipitated with HSF1, a known facilitator of cancer, we show that also endogenous HSF2 co-precipitates with HSP90. GB and GBA treatment disrupt the interaction between HSP90 and HSF1 and HSP90 and HSF2. Our study implies that these compounds should be used cautiously if developed for cancer therapies, since GB and its derivative GBA are strong inducers of the HSR, in multiple cell types, by involving the dissociation of a HSP90-HSF1/HSF2 complex.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Compuestos de Sulfhidrilo/metabolismo , Factores de Transcripción/metabolismo , Xantenos/farmacología , Xantonas/farmacología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Unión Proteica/efectos de los fármacos , Xantenos/química , Xantonas/química
5.
Addict Biol ; 26(2): e12939, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32720424

RESUMEN

Ethanol consumption impairs learning and memory through disturbances of NMDA-type glutamate receptor-dependent synaptic plasticity (long-term depression [LTD] and long-term potentiation [LTP]) in the hippocampus. Recently, we demonstrated that two ethanol binge-like episodes in young adult rats selectively blocked NMDA-LTD in hippocampal slices, increased NMDA receptor sensitivity to a GluN2B subunit antagonist, and induced cognitive deficits. Here, using knockout adult mice, we show that a stress-responsive transcription factor of the heat shock factor family, HSF2, which is involved in the perturbation of brain development induced by ethanol, participates in these processes. In the absence of ethanol, hsf2-/- mice show a selective loss of LTD in the hippocampus, which is associated with an increased sensitivity of NMDA-field excitatory postsynaptic potentials (fEPSPs) to a GluN2B antagonist, compared with wild-type (WT) mice. These results suggest that HSF2 is required for proper glutamatergic synaptic transmission and LTD plasticity. After 1 month of chronic ethanol consumption in a two-bottle choice paradigm, WT mice showed an increase in hippocampal synaptic transmission, an enhanced sensitivity to GluN2B antagonist, and a blockade of LTD. In contrast, such modulation of synaptic transmission and plasticity were absent in hsf2-/- mice. We conclude that HSF2 is an important mediator of both glutamatergic neurotransmission and synaptic plasticity in basal conditions and also mediates ethanol-induced neuroadaptations of the hippocampus network after chronic ethanol intake.


Asunto(s)
Etanol/farmacología , Factores de Transcripción del Choque Térmico/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , N-Metilaspartato/efectos de los fármacos , Adolescente , Adulto , Factores de Edad , Animales , Hipocampo/efectos de los fármacos , Humanos , Ratones
6.
Cell Rep ; 30(2): 583-597.e6, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31940498

RESUMEN

Maintenance of protein homeostasis, through inducible expression of molecular chaperones, is essential for cell survival under protein-damaging conditions. The expression and DNA-binding activity of heat shock factor 2 (HSF2), a member of the heat shock transcription factor family, increase upon exposure to prolonged proteotoxicity. Nevertheless, the specific roles of HSF2 and the global HSF2-dependent gene expression profile during sustained stress have remained unknown. Here, we found that HSF2 is critical for cell survival during prolonged proteotoxicity. Strikingly, our RNA sequencing (RNA-seq) analyses revealed that impaired viability of HSF2-deficient cells is not caused by inadequate induction of molecular chaperones but is due to marked downregulation of cadherin superfamily genes. We demonstrate that HSF2-dependent maintenance of cadherin-mediated cell-cell adhesion is required for protection against stress induced by proteasome inhibition. This study identifies HSF2 as a key regulator of cadherin superfamily genes and defines cell-cell adhesion as a determinant of proteotoxic stress resistance.


Asunto(s)
Muerte Celular/inmunología , Supervivencia Celular/inmunología , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Animales , Adhesión Celular , Humanos , Regulación hacia Arriba
7.
Cell Stress Chaperones ; 23(1): 115-126, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28712054

RESUMEN

Abundant evidence has accumulated showing that fetal alcohol exposure broadly modifies DNA methylation profiles in the brain. DNA methyltransferases (DNMTs), the enzymes responsible for DNA methylation, are likely implicated in this process. However, their regulation by ethanol exposure has been poorly addressed. Here, we show that alcohol exposure modulates DNMT protein levels through multiple mechanisms. Using a neural precursor cell line and primary mouse embryonic fibroblasts (MEFs), we found that ethanol exposure augments the levels of Dnmt3a, Dnmt3b, and Dnmt3l transcripts. We also unveil similar elevation of mRNA levels for other epigenetic actors upon ethanol exposure, among which the induction of lysine demethylase Kdm6a shows heat shock factor dependency. Furthermore, we show that ethanol exposure leads to specific increase in DNMT3A protein levels. This elevation not only relies on the upregulation of Dnmt3a mRNA but also depends on posttranscriptional mechanisms that are mediated by NADPH oxidase-dependent production of reactive oxygen species (ROS). Altogether, our work underlines complex regulation of epigenetic actors in response to alcohol exposure at both transcriptional and posttranscriptional levels. Notably, the upregulation of DNMT3A emerges as a prominent molecular event triggered by ethanol, driven by the generation of ROS.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Etanol/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Ratones , NADPH Oxidasas/metabolismo , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
J Mol Biol ; 427(24): 3793-816, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26482101

RESUMEN

Starting as a paradigm for stress responses, the study of the transcription factor (TF) family of heat shock factors (HSFs) has quickly and widely expanded these last decades, thanks to their fascinating and significant involvement in a variety of pathophysiological processes, including development, reproduction, neurodegeneration and carcinogenesis. HSFs, originally defined as classical TFs, strikingly appeared to play a central and often pioneering role in reshaping the epigenetic landscape. In this review, we describe how HSFs are able to sense the epigenetic environment, and we review recent data that support their role as sculptors of the chromatin landscape through their complex interplay with chromatin remodelers, histone-modifying enzymes and non-coding RNAs.


Asunto(s)
Epigénesis Genética , Proteínas de Choque Térmico/fisiología , Estrés Fisiológico , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Sitios de Unión , Humanos , Transcripción Genética
9.
Development ; 141(21): 4127-38, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25273086

RESUMEN

During the early steps of head development, ectodermal patterning leads to the emergence of distinct non-neural and neural progenitor cells. The induction of the preplacodal ectoderm and the neural crest depends on well-studied signalling interactions between the non-neural ectoderm fated to become epidermis and the prospective neural plate. By contrast, the involvement of the non-neural ectoderm in the morphogenetic events leading to the development and patterning of the central nervous system has been studied less extensively. Here, we show that the removal of the rostral non-neural ectoderm abutting the prospective neural plate at late gastrulation stage leads, in mouse and chick embryos, to morphological defects in forebrain and craniofacial tissues. In particular, this ablation compromises the development of the telencephalon without affecting that of the diencephalon. Further investigations of ablated mouse embryos established that signalling centres crucial for forebrain regionalization, namely the axial mesendoderm and the anterior neural ridge, form normally. Moreover, changes in cell death or cell proliferation could not explain the specific loss of telencephalic tissue. Finally, we provide evidence that the removal of rostral tissues triggers misregulation of the BMP, WNT and FGF signalling pathways that may affect telencephalon development. This study opens new perspectives on the role of the neural/non-neural interface and reveals its functional relevance across higher vertebrates.


Asunto(s)
Ectodermo/embriología , Animales , Apoptosis/genética , Apoptosis/fisiología , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Embrión de Pollo , Ectodermo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Cresta Neural/embriología , Cresta Neural/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Embarazo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo
10.
EMBO Mol Med ; 6(8): 1043-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25027850

RESUMEN

Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1-HSF2 heterocomplexes. This perturbs the in vivo binding of HSF2 to heat shock elements (HSEs) in genes that control neuronal migration in normal conditions, such as p35 or the MAPs (microtubule-associated proteins, such as Dclk1 and Dcx), and alters their expression. In the absence of HSF2, migration defects as well as alterations in gene expression are reduced. Thus, HSF2, as a sensor for alcohol stress in the fetal brain, acts as a mediator of the neuronal migration defects associated with FASD.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal/patología , Proteínas de Choque Térmico/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/inducido químicamente , Estrés Fisiológico , Factores de Transcripción/metabolismo , Animales , Corteza Cerebral/patología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Proteína Doblecortina , Regulación de la Expresión Génica , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/deficiencia , Ratones , Ratones Noqueados , Unión Proteica , Factores de Transcripción/deficiencia
11.
PLoS Biol ; 12(6): e1001890, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24960041

RESUMEN

During early development, modulations in the expression of Nodal, a TGFß family member, determine the specification of embryonic and extra-embryonic cell identities. Nodal has been extensively studied in the mouse, but aspects of its early expression remain unaccounted for. We identified a conserved hotspot for the binding of pluripotency factors at the Nodal locus and called this sequence "highly bound element" (HBE). Luciferase-based assays, the analysis of fluorescent HBE reporter transgenes, and a conditional mutation of HBE allowed us to establish that HBE behaves as an enhancer, is activated ahead of other Nodal enhancers in the epiblast, and is essential to Nodal expression in embryonic stem cells (ESCs) and in the mouse embryo. We also showed that HBE enhancer activity is critically dependent on its interaction with the pluripotency factor Oct4 and on Activin/Nodal signaling. Use of an in vitro model of epiblast maturation, relying on the differentiation of ESCs into epiblast stem cells (EpiSCs), revealed that this process entails a shift in the regulation of Nodal expression from an HBE-driven phase to an ASE-driven phase, ASE being another autoregulatory Nodal enhancer. Deletion of HBE in ESCs or in EpiSCs allowed us to show that HBE, although not necessary for Nodal expression in EpiSCs, is required in differentiating ESCs to activate the differentiation-promoting ASE and therefore controls this regulatory shift. Our findings clarify how early Nodal expression is regulated and suggest how this regulation can promote the specification of extra-embryonic precusors without inducing premature differentiation of epiblast cells. More generally, they open new perspectives on how pluripotency factors achieve their function.


Asunto(s)
Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/fisiología , Proteína Nodal/metabolismo , Animales , Diferenciación Celular , Línea Celular , Estratos Germinativos/citología , Proteínas de Homeodominio/metabolismo , Subunidades beta de Inhibinas/metabolismo , Ratones , Ratones Transgénicos , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
12.
Dev Biol ; 349(2): 350-62, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21047506

RESUMEN

Nodal, a secreted factor known for its conserved functions in cell-fate specification and the establishment of embryonic axes, is also required in mammals to maintain the pluripotency of the epiblast, the tissue that gives rise to all fetal lineages. Although Nodal is expressed as early as E3.5 in the mouse embryo, its regulation and functions at pre- and peri-implantation stages are currently unknown. Sensitive reporter transgenes for two Nodal cis-regulatory regions, the PEE and the ASE, exhibit specific expression profiles before implantation. Mutant and inhibitor studies find them respectively regulated by Wnt/ß-catenin signaling and Activin/Nodal signaling, and provide evidence for localized and heterogeneous activities of these pathways in the inner cell mass, the epiblast and the primitive endoderm. These studies also show that Nodal and its prime effector, FoxH1, are not essential to preimplantation Activin/Nodal signaling. Finally, a strong upregulation of the ASE reporter in implanting blastocysts correlates with a downregulation of the pluripotency factor Nanog in the maturing epiblast. This study uncovers conservation in the mouse blastocyst of Wnt/ß-catenin and Activin/Nodal-dependent activities known to govern Nodal expression and the establishment of polarity in the blastula of other deuterostomes. Our results indicate that these pathways act early on to initiate distinct cell-specification processes in the ICM derivatives. Our data also suggest that the activity of the Activin/Nodal pathway is dampened by interactions with the molecular machinery of pluripotency until just before implantation, possibly delaying cell-fate decisions in the mouse embryo.


Asunto(s)
Embrión de Mamíferos/embriología , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/fisiología , Proteína Nodal/metabolismo , Transducción de Señal/fisiología , Activinas/metabolismo , Animales , Sitios de Unión/genética , Biología Computacional , Secuencia Conservada/genética , Cartilla de ADN/genética , Embrión de Mamíferos/metabolismo , Endodermo/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Genotipo , Estratos Germinativos/metabolismo , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Funciones de Verosimilitud , Ratones , Ratones Transgénicos , Microscopía Confocal , Modelos Genéticos , Proteína Homeótica Nanog , Proteína Nodal/genética , Transducción de Señal/genética , beta-Galactosidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA