Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657972

RESUMEN

Advances in fluorescence microscopy and tissue-clearing have revolutionised 3D imaging of fluorescently labelled tissues, organs and embryos. However, the complexity and high cost of existing software and computing solutions limit their widespread adoption, especially by researchers with limited resources. Here, we present Acto3D, an open-source software, designed to streamline the generation and analysis of high-resolution 3D images of targets labelled with multiple fluorescent probes. Acto3D provides an intuitive interface for easy 3D data import and visualisation. Although Acto3D offers straightforward 3D viewing, it performs all computations explicitly, giving users detailed control over the displayed images. Leveraging an integrated graphics processing unit, Acto3D deploys all pixel data to system memory, reducing visualisation latency. This approach facilitates accurate image reconstruction and efficient data processing in 3D, eliminating the need for expensive high-performance computers and dedicated graphics processing units. We have also introduced a method for efficiently extracting lumen structures in 3D. We have validated Acto3D by imaging mouse embryonic structures and by performing 3D reconstruction of pharyngeal arch arteries while preserving fluorescence information. Acto3D is a cost-effective and efficient platform for biological research.


Asunto(s)
Imagenología Tridimensional , Programas Informáticos , Imagenología Tridimensional/métodos , Animales , Ratones , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Embrión de Mamíferos/diagnóstico por imagen
3.
Sci Rep ; 9(1): 11953, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420575

RESUMEN

The endocardium is the endothelial component of the vertebrate heart and plays a key role in heart development. Where, when, and how the endocardium segregates during embryogenesis have remained largely unknown, however. We now show that Nkx2-5+ cardiac progenitor cells (CPCs) that express the Sry-type HMG box gene Sox17 from embryonic day (E) 7.5 to E8.5 specifically differentiate into the endocardium in mouse embryos. Although Sox17 is not essential or sufficient for endocardium fate, it can bias the fate of CPCs toward the endocardium. On the other hand, Sox17 expression in the endocardium is required for heart development. Deletion of Sox17 specifically in the mesoderm markedly impaired endocardium development with regard to cell proliferation and behavior. The proliferation of cardiomyocytes, ventricular trabeculation, and myocardium thickening were also impaired in a non-cell-autonomous manner in the Sox17 mutant, likely as a consequence of down-regulation of NOTCH signaling. An unknown signal, regulated by Sox17 and required for nurturing of the myocardium, is responsible for the reduction in NOTCH-related genes in the mutant embryos. Our results thus provide insight into differentiation of the endocardium and its role in heart development.


Asunto(s)
Diferenciación Celular , Embrión de Mamíferos/embriología , Endocardio/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/biosíntesis , Factores de Transcripción SOXF/biosíntesis , Transducción de Señal , Células Madre/metabolismo , Animales , Embrión de Mamíferos/citología , Endocardio/citología , Proteínas HMGB/genética , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Transgénicos , Receptores Notch/genética , Receptores Notch/metabolismo , Factores de Transcripción SOXF/genética , Células Madre/citología
4.
Cell Rep ; 16(4): 1026-1038, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27396331

RESUMEN

A surface marker that distinctly identifies cardiac progenitors (CPs) is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2), specifically marks CPs. GFRA2 expression facilitates the isolation of CPs by fluorescence activated cell sorting from differentiating mouse and human pluripotent stem cells. Gfra2 mutants reveal an important role for GFRA2 in cardiomyocyte differentiation and development both in vitro and in vivo. Mechanistically, the cardiac GFRA2 signaling pathway is distinct from the canonical pathway dependent on the RET tyrosine kinase and its established ligands. Collectively, our findings establish a platform for investigating the biology of CPs as a foundation for future development of CP transplantation for treating heart failure.


Asunto(s)
Diferenciación Celular/fisiología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Glicosilfosfatidilinositoles/metabolismo , Humanos , Ligandos , Ratones , Organogénesis/fisiología , Células Madre Pluripotentes/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
5.
J Clin Invest ; 126(6): 2151-66, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27140396

RESUMEN

Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1-/-), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1-/- mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1-/- mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage-induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI.


Asunto(s)
Activación de Macrófagos , Infarto del Miocardio/inmunología , Animales , Tejido Conectivo/inmunología , Tejido Conectivo/patología , Tejido Conectivo/fisiopatología , Fibroblastos/inmunología , Fibroblastos/patología , Fibroblastos/fisiología , Interleucina-4/administración & dosificación , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Macrófagos/clasificación , Macrófagos/inmunología , Macrófagos/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/inmunología , Miocardio/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Regeneración/genética , Regeneración/inmunología , Regeneración/fisiología
6.
Dev Dyn ; 245(2): 157-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26515123

RESUMEN

BACKGROUND: Embryonic stem (ES) cells are pluripotent cells with the ability to differentiate to any cell type of the resident organism. In recent years, significant advances have been made in using these cells to obtain large numbers of cardiomyocyte (CM)-like cells for scientific research and clinical application. A vast number of protocols have emerged describing differentiation methods without the use of animal serum or extracts restrictive for use in a human clinical setting. These techniques follow a complicated procedure, which although successful, show a relatively varied yield among cell batches. RESULTS: We have designed a three-step differentiation protocol using defined reagents and a monolayer culture without feeder cells, avoiding embryoid body formation and multiple trypsin treatment, in which beating foci appeared as early as day 6 in in vitro differentiating conditions. Our results show a high yield of CM reaching approximately 60% of the differentiated cells after 13 days in vitro. CONCLUSIONS: We provide a fast, simple, reliable and reproducible protocol for inducing murine ES cells toward a CM-like phenotype comparable to available high-yield protocols, without the use of intermediate trypsinization/passage steps.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Embrionarias de Ratones/citología , Miocitos Cardíacos/citología , Animales , Ratones
7.
PLoS One ; 10(10): e0140831, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26469858

RESUMEN

In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.


Asunto(s)
Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica/métodos , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual/métodos , Animales , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Embarazo , Transcriptoma
8.
Dev Cell ; 34(1): 96-107, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26120033

RESUMEN

In many adult tissues, homeostasis relies on self-renewing stem cells that are primed for differentiation. The reconciliation mechanisms of these characteristics remain a fundamental question in stem cell biology. We propose that regulation at the post-transcriptional level is essential for homeostasis in murine spermatogonial stem cells (SSCs). Here, we show that Nanos2, an evolutionarily conserved RNA-binding protein, works with other cellular messenger ribonucleoprotein (mRNP) components to ensure the primitive status of SSCs through a dual mechanism that involves (1) direct recruitment and translational repression of genes that promote spermatogonial differentiation and (2) repression of the target of rapamycin complex 1 (mTORC1), a well-known negative pathway for SSC self-renewal, by sequestration of the core factor mTOR in mRNPs. This mechanism links mRNA turnover to mTORC1 signaling through Nanos2-containing mRNPs and establishes a post-transcriptional buffering system to facilitate SSC homeostasis in the fluctuating environment within the seminiferous tubule.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas de Unión al ARN/genética , ARN/metabolismo , Espermatogonias/citología , Células Madre/citología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Masculino , Ratones , Transducción de Señal/fisiología
9.
Dev Biol ; 389(2): 173-81, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24576537

RESUMEN

Germ cell sex is defined by factors derived from somatic cells. CYP26B1 is known to be a male sex-promoting factor that inactivates retinoic acid (RA) in somatic cells. In CYP26B1-null XY gonads, germ cells are exposed to a higher level of RA than in normal XY gonads and this activates Stra8 to induce meiosis while male-specific gene expression is suppressed. However, it is unknown whether meiotic entry by an elevated level of RA is responsible for the suppression of male-type gene expression. To address this question, we have generated Cyp26b1/Stra8 double knockout (dKO) embryos. We successfully suppressed the induction of meiosis in CYP26B1-null XY germ cells by removing the Stra8 gene. Concomitantly, we found that the male genetic program represented by the expression of NANOS2 and DNMT3L was totally rescued in about half of dKO germ cells, indicating that meiotic entry causes the suppression of male differentiation. However, half of the germ cells still failed to enter the appropriate male pathway in the dKO condition. Using microarray analyses together with immunohistochemistry, we found that KIT expression was accompanied by mitotic activation, but was canceled by inhibition of the RA signaling pathway. Taken together, we conclude that inhibition of RA is one of the essential factors to promote male germ cell differentiation, and that CYP26B1 suppresses two distinct genetic programs induced by RA: a Stra8-dependent meiotic pathway, and a Stra8-independent mitotic pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Mitosis , Animales , Diferenciación Celular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/deficiencia , Regulación de la Expresión Génica/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Masculino , Meiosis/efectos de los fármacos , Ratones , Ratones Noqueados , Mitosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas de Unión al ARN/metabolismo , Ácido Retinoico 4-Hidroxilasa , Tretinoina/farmacología
10.
Dev Biol ; 385(1): 32-40, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24183939

RESUMEN

NANOS2 is an RNA-binding protein essential for fetal male germ cell development. While we have shown that the function of NANOS2 is vital for suppressing meiosis in embryonic XY germ cells, it is still unknown whether NANOS2 plays other roles in the sexual differentiation of male germ cells. In this study, we addressed the issue by generating Nanos2/Stra8 double knockout (dKO) mice, whereby meiosis was prohibited in the double-mutant male germ cells. We found that the expression of male-specific genes, which was decreased in the Nanos2 mutant, was hardly recovered in the dKO embryo, suggesting that NANOS2 plays a role in male gene expression other than suppression of meiosis. To investigate the molecular events that may be controlled by NANOS2, we conducted a series of microarray analyses to search putative targets of NANOS2 that fulfilled 2 criteria: (1) increased expression in the Nanos2 mutant and (2) the mRNA associated with NANOS2. Interestingly, the genes predominantly expressed in undifferentiated primordial germ cells (PGCs) were significantly selected, implying the involvement of NANOS2 in the termination of the characteristics of PGCs. Furthermore, we showed that NANOS2 is required for the maintenance of mitotic quiescence, but not for the initiation of the quiescence in fetal male germ cells. These results suggest that NANOS2 is not merely a suppressor of meiosis, but instead plays pivotal roles in the sexual differentiation of male germ cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Meiosis , Proteínas de Unión al ARN/fisiología , Espermatozoides/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/biosíntesis , Proteínas de Unión al ARN/genética , Diferenciación Sexual/genética , Transducción de Señal , Espermatozoides/citología , Espermatozoides/metabolismo
11.
Development ; 140(2): 291-300, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23221368

RESUMEN

Testicular development in the mouse is triggered in somatic cells by the function of Sry followed by the activation of fibroblast growth factor 9 (FGF9), which regulates testicular differentiation in both somatic and germ cells. However, the mechanism is unknown. We show here that the nodal/activin signaling pathway is activated in both male germ cells and somatic cells. Disruption of nodal/activin signaling drives male germ cells into meiosis and causes ectopic initiation of female-specific genes in somatic cells. Furthermore, we prove that nodal/activin-A works directly on male germ cells to induce the male-specific gene Nanos2 independently of FGF9. We conclude that nodal/activin signaling is required for testicular development and propose a model in which nodal/activin-A acts downstream of fibroblast growth factor signaling to promote male germ cell fate and protect somatic cells from initiating female differentiation.


Asunto(s)
Activinas/metabolismo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Proteína Nodal/metabolismo , Animales , Proteínas Portadoras/metabolismo , Femenino , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Células Germinativas/metabolismo , Factores de Determinación Derecha-Izquierda/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión al ARN , Procesos de Determinación del Sexo , Transducción de Señal , Factores de Tiempo
12.
PLoS One ; 7(3): e33558, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22448252

RESUMEN

Nanos is one of the evolutionarily conserved proteins implicated in germ cell development and we have previously shown that it interacts with the CCR4-NOT deadenylation complex leading to the suppression of specific RNAs. However, the molecular mechanism and physiological significance of this interaction have remained elusive. In our present study, we identify CNOT1, a component of the CCR4-NOT deadenylation complex, as a direct factor mediating the interaction with NANOS2. We find that the first 10 amino acids (AAs) of NANOS2 are required for this binding. We further observe that a NANOS2 mutant lacking these first 10 AAs (NANOS2-ΔN10) fails to rescue defects in the Nanos2-null mouse. Our current data thus indicate that the interaction with the CCR4-NOT deadenylation complex is essential for NANOS2 function. In addition, we further demonstrate that NANOS2-ΔN10 can associate with specific mRNAs as well as wild-type NANOS2, suggesting the existence of other NANOS2-associated factor(s) that determine the specificity of RNA-binding independently of the CCR4-NOT deadenylation complex.


Asunto(s)
Proteínas Portadoras/fisiología , Embrión de Mamíferos/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Espermatozoides/crecimiento & desarrollo , Espermatozoides/metabolismo , Factores de Transcripción/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Embrión de Mamíferos/citología , Perfilación de la Expresión Génica , Células HeLa , Humanos , Inmunoprecipitación , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Proteínas de Unión al ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasas/genética , Testículo/embriología , Testículo/metabolismo , Factores de Transcripción/genética , Transgenes/fisiología
13.
Biol Reprod ; 86(4): 127, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22190708

RESUMEN

Male and female germ cells enter meiosis in response to an extrinsic cue by retinoic acid (RA), but the pathways downstream of RA signaling that regulate early gametogenesis remain uncertain. We identified a novel reproductive homeobox gene, Rhox13, transcribed in the prenatal ovary and testis beginning on Embryonic Day (E) 13.5. Translation of RHOX13 also begins in female germ cells on E13.5 but is suppressed in male germ cells until Postnatal Day 3. Translation of RHOX13 coincides with initiation of RA signaling in both male and female gonads in vivo but occurs precociously in neonatal testes exposed to RA in vitro or in fetal male germ cells when NANOS2 is absent in vivo. Conversely, RHOX13 translation in female germ cells is suppressed in the presence of ectopically induced NANOS2. These results strongly suggest that RHOX13 expression is regulated at a posttranscriptional step by direct interaction of NANOS2 with Rhox13 mRNA to suppress translation.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ovario/metabolismo , ARN Mensajero/metabolismo , Testículo/metabolismo , Animales , Diferenciación Celular , Femenino , Perfilación de la Expresión Génica , Células Germinativas/citología , Células Germinativas/metabolismo , Masculino , Meiosis/fisiología , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas de Unión al ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores Sexuales , Transducción de Señal , Tretinoina/farmacología
14.
PLoS One ; 5(2): e9300, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20174582

RESUMEN

BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.


Asunto(s)
Regiones no Traducidas 3'/genética , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Proteínas de Unión al ARN/genética , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Proteína Fluorescente Roja
15.
Proc Natl Acad Sci U S A ; 106(23): 9292-7, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19470461

RESUMEN

Hair is maintained through a cyclic process that includes periodic regeneration of hair follicles in a stem cell-dependent manner. Little is known, however, about the cellular and molecular mechanisms that regulate the layered differentiation of the hair follicle. We have established a mutant mouse with a cyclic alopecia phenotype resulting from the targeted disruption of Sox21, a gene that encodes a HMG-box protein. These mice exhibit progressive hair loss after morphogenesis of the first hair follicle and become completely nude in appearance, but then show hair regrowth. Sox21 is expressed in the cuticle layer and the progenitor cells of the hair shaft in both mouse and human. The lack of this gene results in a loss of the interlocking structures required for anchoring the hair shaft in the hair follicle. Furthermore, the expression of genes encoding the keratins and keratin binding proteins in the hair shaft cuticle are also specifically down-regulated in the Sox21-null mouse. These results indicate that Sox21 is a master regulator of hair shaft cuticle differentiation and shed light on the possible causes of human hair disorders.


Asunto(s)
Alopecia/genética , Diferenciación Celular , Factores de Transcripción SOXB2/metabolismo , Animales , Cabello/citología , Cabello/crecimiento & desarrollo , Folículo Piloso/citología , Folículo Piloso/crecimiento & desarrollo , Queratinas/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción SOXB2/genética , Células Madre/metabolismo
16.
Development ; 132(9): 2147-55, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15788459

RESUMEN

Proneural basic helix-loop-helix (bHLH) proteins are key regulators of neurogenesis. However, downstream target genes of the bHLH proteins remain poorly defined. Mbh1 confers commissural neuron identity in the spinal cord. Enhancer analysis using transgenic mice revealed that Mbh1 expression required an E-box 3' of the Mbh1 gene. Mbh1 expression was lost in Math1 knockout mice, whereas misexpression of Math1 induced ectopic expression of Mbh1. Moreover, Math1 bound the Mbh1 enhancer containing the E-box in vivo and activated gene expression. Generation of commissural neurons by Math1 was inhibited by a dominant negative form of Mbh1. These findings indicate that Mbh1 is necessary and sufficient for the specification of commissural neurons, as a direct downstream target of Math1.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Unión al ADN/genética , Elementos E-Box , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Operón Lac , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteínas Nucleares/genética , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/genética
17.
J Neurosci ; 23(6): 1987-91, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12657654

RESUMEN

Commissural neurons in the spinal cord project their axons through the floor plate using a number of molecular interactions, such as netrins and their receptor DCC (deleted in colorectal cancer). However, the molecular cascades that control differentiation of commissural neurons are less characterized. A homeobox gene, MBH1 (mammalian BarH1) was expressed specifically in a subset of dorsal cells in the developing spinal cord. Transgenic mice that carried lacZ and MBH1-flanking genome sequences demonstrated that MBH1 was expressed by commissural neurons. To analyze the function of MBH1, we established an in vivo electroporation method for the transfer of DNA into the mouse spinal cord. Ectopic expression of MBH1 drove dorsal cells into the fate of commissural neurons with concomitant expression of TAG-1 (transiently expressed axonal surface glycoprotein 1) and DCC. Cells ectopically expressing MBH1 migrated to the deep dorsal horn, in which endogenous MBH1-positive cells accumulated. These results suggest that MBH1 functions upstream of TAG-1 and DCC and is involved in the fate determination of commissural neurons in the spinal cord.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Proteínas del Ojo/biosíntesis , Neuronas/metabolismo , Médula Espinal/metabolismo , Factores de Transcripción , Región de Flanqueo 3' , Región de Flanqueo 5' , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/farmacología , Electroporación/métodos , Proteínas del Ojo/genética , Proteínas del Ojo/farmacología , Técnicas de Transferencia de Gen , Genes Reporteros , Proteínas de Homeodominio , Inyecciones Espinales , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Neuronas/citología , Células del Asta Posterior/citología , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Médula Espinal/citología , Médula Espinal/embriología , Transgenes/fisiología , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...