Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(6): 5984-5993, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36916800

RESUMEN

2D materials display exciting properties in numerous fields, but the development of applications is hindered by the low yields, high processing times, and impaired quality of current exfoliation methods. In this work we have used the excellent MW absorption properties of MoS2 to induce a fast heating that produces the near-instantaneous evaporation of an adsorbed, low boiling point solvent. The sudden evaporation creates an internal pressure that separates the MoS2 layers with high efficiency, and these are kept separated by the action of the dispersion solvent. Our fast method (90 s) gives high yields (47% at 0.2 mg/mL, 35% at 1 mg/mL) of highly exfoliated material (90% under 4 layers), large area (up to several µm2), and excellent quality (no significant MoO3 detected).

2.
Opt Express ; 30(12): 20451-20468, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224790

RESUMEN

Metallic spintronic terahertz (THz) emitters have become well-established for offering ultra-broadband, gapless THz emission in a variety of excitation regimes, in combination with reliable fabrication and excellent scalability. However, so far, their potential for high-average-power excitation to reach strong THz fields at high repetition rates has not been thoroughly investigated. In this article, we explore the power scaling behavior of tri-layer spintronic emitters using an Yb-fiber excitation source, delivering an average power of 18.5 W (7 W incident on the emitter after chopping) at 400 kHz repetition rate, temporally compressed to a pulse duration of 27 fs. We confirm that a reflection geometry with back-side cooling is ideally suited for these emitters in the high-average-power excitation regime. In order to understand limiting mechanisms, we disentangle the effects on THz power generation by average power and pulse energy by varying the repetition rate of the laser. Our results show that the conversion efficiency is predominantly determined by the incident fluence in this high-average-power, high-repetition-rate excitation regime if the emitters are efficiently cooled. Using these findings, we optimize the conversion efficiency and reach highest excitation powers in the back-cooled reflection geometry. Our findings provide guidelines for scaling the power of THz radiation emitted by spintronic emitters to the milliwatt-level by using state-of-the-art femtosecond sources with multi-hundred-Watt average power to reach ultra-broadband, strong-field THz sources with high repetition rate.

3.
Angew Chem Int Ed Engl ; 61(35): e202208189, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35789180

RESUMEN

Mechanically interlocked derivatives of carbon nanotubes (MINTs) are interesting nanotube products since they show high stability without altering the carbon nanotube structure. So far, MINTs have been synthesized using ring-closing metathesis, disulfide exchange reaction, H-bonding or direct threading with macrocycles. Here, we describe the encapsulation of single-walled carbon nanotubes within a palladium-based metallosquare. The formation of MINTs was confirmed by a variety of techniques, including high-resolution transmission electron microscopy. We find the making of these MINTs is remarkably sensitive to structural variations of the metallo-assemblies. When a metallosquare with a cavity of appropriate shape and size is used, the formation of the MINT proceeds successfully by both templated clipping and direct threading. Our studies also show indications on how supramolecular coordination complexes can help expand the potential applications of MINTs.

4.
Faraday Discuss ; 205: 233-243, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28892109

RESUMEN

In this work, we evaluate the dependence of tip-enhanced Raman (TER) spectra of a monolayer of thiophenol at a Au(111) electrode on the scanning tunneling microscope's tunneling current set-point and bias voltage parameters. We find an increase of the TER intensity upon set-point increase or bias decrease as expected from a gap-distance reduction. The relations obtained follow a theoretical model considering a simple gap-distance change when tuning the mentioned parameters. We find that the value of the bias voltage affects the TER intensity to a larger extent than the current set-point. Therefore it is advisable to work in a low-bias regime when aiming for ultrasensitive TER measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...