Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(19): 193401, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804958

RESUMEN

Attractive p-wave one-dimensional fermions are studied in the fermionic Tonks-Girardeau regime in which the diagonal properties are shared with those of an ideal Bose gas. We study the off-diagonal properties and present analytical expressions for the eigenvalues of the one-body density matrix. One striking aspect is the universality of the occupation numbers which are independent of the specific shape of the external potential. We show that the occupation of natural orbitals occurs in pairs, indicating the formation of composite bosons, each consisting of two attractive fermions. The formation of composite bosons sheds light on the pairing mechanism of the system orbitals, yielding a total density equal to that of a Bose-Einstein condensate.

2.
Sci Total Environ ; 933: 173165, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38740195

RESUMEN

Microplastics in freshwater ecosystems have gained attention for their potential impact on biodiversity. Rivers are complex and dynamic ecosystems that transport particles and organic matter from the headwaters through watersheds to the ocean. Changes in land use and the presence of wastewater treatment plants (WWTPs) increase the risk of plastic contamination. Simultaneously, hydromorphological features of the watershed can influence the dispersion and retention of microplastics. This study assesses the impact of urban land uses and river hydromorphology on microplastic abundance and spatial distribution in two watersheds with contrasting land uses. Unexpectedly, our findings show that microplastics were widespread throughout watersheds both in water (3.5 ± 3.3 particles/L) and sediments (56.9 ± 39.9 particles/g). The concentration of microplastics in sediments significantly increased in granulometry ranging from 0.5 to 1 mm. Microplastics in running waters are significantly correlated with increasing urban land use coverage. However, the presence and distance of WWTPs did not affect microplastic distribution. In conclusion, contrasting patterns were observed for suspended and sedimented microplastic particles: suspended microplastics were associated with an anthropogenic effect, whereas the concentration of microplastics in sediments was determined by riverbed granulometry. Our results suggest that the interaction of anthropogenic and environmental factors shapes microplastic distribution along the rivers and their subsequent transport toward the coastal ocean. Finally, a review of the current literature reveals the absence of standardization in field and laboratory assessment techniques and measurement units, representing a challenge for intercomparisons of river microplastic studies.

3.
Plants (Basel) ; 10(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34451627

RESUMEN

Differences in the elemental composition of plants, mainly C, N, and P, have been shown to be related to differences in their nutritional status, and their morphological and functional traits. The relationship between morphological traits and micronutrients and trace elements, however, has been much less studied. Additionally, in bryophytes, research devoted to investigating these relationships is still very scarce. Here, we analysed 80 samples from 29 aquatic and semi-aquatic (hygrophytic) moss species living in Mediterranean springs to investigate the relationship between moss nutrient concentrations and their micro- and macroscopic morphological traits and growth forms. We found that, across species, the elemental concentration of mosses was more tightly linked to macroscopic traits than to microscopic traits. Growth forms could also be successfully explained by the concentration of elements in mosses. Apart from macronutrients and their stoichiometric ratios (C:N, C:P, and N:P), micronutrients and trace elements were also important variables predicting moss morphological traits and growth forms. Additionally, our results showed that microscopic traits were well related to macroscopic traits. Overall, our results clearly indicate that the elemental composition of mosses can be used to infer their morphological traits, and that elements other than macronutrients should be taken into account to achieve a good representation of their morphological and, potentially, functional traits when comparing the elemental composition across species.

4.
Sci Total Environ ; 794: 148601, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34217080

RESUMEN

Water quality and riparian communities are among the most affected stream components by agriculture. However, little is known about the effects of riparian management for both aquatic and terrestrial taxa at different spatial scales. Here, we surveyed aquatic (diatoms) and terrestrial taxa (bryophytes, vascular plants, litter-dwelling snails, and ground and volant arthropods), to compare the abundance and richness of riparian taxa and chemical quality between reference and exposed sites in two stream reaches each of c. 3.5 km in northwestern Spain. Impacts in exposed sites were mainly due to traditional farming practices (TFPs), which included traditional meadow management, weirs built for now-unused water mills and sporadic timber harvesting. Therefore, we measured ten covariates and predictors related to the intensification of TFPs at local and within-stream scales and explored associations with riparian and water-quality measures to study the potential effects of TFPs in more detail. Reference and exposed sites did not differ significantly in water properties (diatom-biotic indices, conductivity, total organic carbon and nitrates), but exposed sites had less concentrations of soil metals Cd, Cu, Ni and Zn and less cover and richness of riparian trees, as inferred by the index QBR. Exposed sites had more volant insect decomposers and reference sites a greater abundance or richness of snails, ground predators and decomposers. Bryophyte richness was greater in reference sites. Our inferences may inform the joint cumulative downstream effects of weirs, meadow uses and riparian alterations but were generally consistent with most riparian taxa benefiting from having larger forested areas. Given the contrasting responses among taxa, we argue that land snails, terrestrial flies, and centipedes may be valuable additions to current riparian assessments mostly based on plants, beetles and spiders as indicator taxa. Our study also suggests caution when inferring farming impacts on streams from the surface area of pastoral land.


Asunto(s)
Pradera , Calidad del Agua , Agricultura , Animales , Ecosistema , Bosques , Árboles
5.
Ecol Lett ; 24(7): 1375-1386, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33894025

RESUMEN

Ecological stoichiometry and studies of biogeochemical niches have mainly focused on plankton and vascular plants, but the phenotypically closest modern relatives of early plants, bryophytes, have been largely neglected. We analysed C:N:P stoichiometries and elemental compositions (K, Na, Mg, Ca, S, Fe) of 35 widely distributed bryophyte species inhabiting springs. We estimated bryophyte C:N:P ratios and their biogeochemical niches, investigated how elementomes respond to the environment and determined whether they tend to diverge more for coexisting than non-coexisting individuals and species. The median C:N:P was 145:8:1, intermediate between Redfield's ratio for marine plankton and those for vascular plants. Biogeochemical niches were differentiated amongst species and were phylogenetically conserved. Differences in individual and species-specific elementomes increased with coexistence between species. Our results provide an evolutionary bridge between the ecological stoichiometries of algae and vascular plants and suggest that differences in elementomes could be used to understand community assemblages and functional diversity.


Asunto(s)
Briófitas , Humanos , Plancton , Especificidad de la Especie
6.
Environ Sci Technol ; 54(23): 15376-15384, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175518

RESUMEN

Emergent macrophyte species selection is critical for the effectiveness of nature-based engineered solutions aiming to address excess nutrient concentrations in freshwater ecosystems. Yet, the mechanisms with which macrophytes enhance nutrient retention need to be further understood. Here, we compared nutrient retention among 12 artificial flumes fed with effluents from a wastewater treatment plant and subjected to four treatments: absence of macrophytes (control) and presence of three different macrophyte species (Iris pseudacorus L., Phragmites australis L., and Schoenoplectus lacustris L.). We estimated the net and gross nutrient uptake based on the longitudinal profiles of ambient concentrations and on pulse injections of ammonium (NH4+) and soluble reactive phosphorus. Further, we investigated the influence of subsurface hydrological retention, attributed to the architectural differences in the roots of these macrophytes, on nutrient retention. Results showed a species-specific effect of macrophytes on nutrient retention and confirmed root-associated subsurface hydrological retention as a driving factor. Schoenoplectus showed both high net and gross NH4+ uptake, thereby being the most effective species to address N loading, compared to Iris and Phragmites. This work contributes to improve our mechanistic understanding of the role of emergent macrophytes on nutrient retention in aquatic environments.


Asunto(s)
Ecosistema , Nitrógeno , Agua Dulce , Nutrientes , Fósforo
7.
J Environ Manage ; 252: 109585, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31600688

RESUMEN

In the Mediterranean region, water scarcity compromises stream water quality particularly downstream of wastewater treatment plants (WWTP). We tested the potential of four helophyte species to reduce dissolved inorganic nitrogen (N) and phosphorus (P) from WWTP effluents. We conducted an 11-month mesocosm experiment to assess differences in N and P content among plant compartments and among species. Moreover, we quantified the relative contribution of above and belowground parts of the plants to N and P retention. The experiment was conducted at the Urban River Laboratory (www.urbanriverlab.com) in artificial channels (12 m long x 0.6 m wide x 0.4 m deep) planted with monospecific stands of Iris pseudoacorus, Typha angustifolia, Phragmites australis and Scirpus lacustris. Channels (three replicates per species) received water from the WWTP effluent, which flowed at a constant rate of 5 L min-1 through the sub-surface. The helophytes were planted in November 2014 and biomass standing stocks of carbon (C), N and P were measured in October 2015 at the time of maximum plant biomass. Differences in the concentration of N and P were larger among plant compartments than among species. The highest N concentration was measured in leaves while rhizomes showed the highest P concentration. The total plant biomass varied greatly among species from 11.4 to 4.6 Kg DW m-2 for Iris and Scirpus, respectively. Iris accumulated the highest amount of N (256 g N m-2) and P (27 g P m-2) in biomass. Plants retained from 8% (Scirpus) to 19% (Iris) of total dissolved inorganic N inputs to the channels (10.4 kg N) during the experiment, and from 6% (Phragmites) to 14% (Iris) of total dissolved inorganic P inputs (1.3 kg P). This study provides quantitative evidence to water managers of the potential role of helophytes to improve water quality in freshwater ecosystems receiving water from WWTP effluents.


Asunto(s)
Typhaceae , Aguas Residuales , Biomasa , Ecosistema , Nitrógeno , Fósforo
8.
Environ Sci Technol ; 53(13): 7613-7620, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31244076

RESUMEN

Bioengineering techniques are currently used  in a wide variety of wastewater treatment systems. Aquatic plants (i.e., helophytes) used in these techniques reduce excess nitrogen (N) from water column via assimilation. Moreover, leachates from plant leaf-litter can serve as an additional source of labile dissolved organic matter (DOM), which can promote aerobic respiration and N removal via denitrification. We tested the influence of leaf-litter leachates from  Iris pseudacorus and Phragmites australis on the structure and activity of freshwater biofilms grown in flumes fed by effluent from a wastewater treatment plant (WWTP). The responses of the epilithic biofilm to the inputs of leaf-litter leachates were compared to those measured using a brewery byproduct rich in sugars and to the WWTP effluent water (i.e., control). All DOM sources significantly enhanced aerobic respiration and denitrification of the biofilm when compared to the controls, with increases in total microbial abundance but not in denitrifier abundance. The results suggest that metabolic activity of biofilms may be limited by bioavailability of DOM in WWTP effluent; and leaf-litter leachates of helophytes used in bioengineering techniques could alleviate this limitation by enhancing microbial N and C uptake.


Asunto(s)
Aguas Residuales , Purificación del Agua , Desnitrificación , Nitrógeno , Hojas de la Planta
9.
Sci Total Environ ; 642: 937-945, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929145

RESUMEN

Wastewater discharges into fluvial ecosystems represent a significant and continuous source of fine particles and nutrients that can severely modify stream community composition and functionality. Depending on both wastewater and stream features (e.g., nutrient removal treatments and stream dilution capacity), the ecological effects can be more or less severe. To determine how hyporheic habitat and hyporheos are affected, we analysed eight Mediterranean streams both upstream and downstream of a wastewater effluent. The results demonstrated that environmental factors associated with clogging, such as the quantity of fine particulate and organic matter in sediment, were magnified downstream of the wastewater inputs. Likewise, dissolved nutrients also increased but depended to a greater extent on the presence of a wastewater treatment plant and on the nitrogen and phosphorus removal treatments. The hyporheic invertebrates were more affected by clogging than by eutrophication. Both richness and diversity parameters were negatively correlated with clogging features but were not correlated with eutrophication. The most affected taxa were Macrocrustaceans, Hydrachnidia and several insect species, which decreased or were not detected downstream of the effluents. On the contrary, other taxa such as Naididae (Oligochaeta), Orthocladiinae (Chironomidae) and Potamopyrgus antipodarum (Gastropoda) benefited from the wastewater inputs.


Asunto(s)
Invertebrados/fisiología , Aguas Residuales/toxicidad , Animales , Ecosistema , Monitoreo del Ambiente , Eutrofización , Región Mediterránea , Fósforo
10.
Sci Total Environ ; 599-600: 1667-1676, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28535595

RESUMEN

Wastewater treatment plant (WWTP) effluents are sources of dissolved organic carbon (DOC) and inorganic nitrogen (DIN) to receiving streams, which can eventually become saturated by excess of DIN. Aquatic plants (i.e., helophytes) can modify subsurface water flowpaths as well as assimilate nutrients and enhance microbial activity in the rhizosphere, yet their ability to increase DIN transformation and removal in WWTP-influenced streams is poorly understood. We examined the influence of helophytes on DIN removal along subsurface water flowpaths and how this was associated with DOC removal and labile C availability. To do so, we used a set of 12 flow-through flumes fed with water from a WWTP effluent. The flumes contained solely sediments or sediments with helophytes. Presence of helophytes in the flumes enhanced both DIN and DOC removal. Experimental addition of a labile C source into the flumes resulted in a high removal of the added C within the first meter of the flumes. Yet, no concomitant increases in DIN removal were observed. Moreover, results from laboratory assays showed significant increases in the potential denitrifying enzyme activity of sediment biofilms from the flumes when labile C was added; suggesting denitrification was limited by C quality. Together these results suggest that lack of DIN removal response to the labile C addition in flumes was likely because potential increases in denitrification by biofilms from sediments were counterbalanced by high rates of mineralization of dissolved organic matter. Our results highlight that helophytes can enhance DIN removal in streams receiving inputs from WWTP effluents; and thus, they can become a relevant bioremediation tool in WWTP-influenced streams. However, results also suggest that the quality of DOC from the WWTP effluent can influence the N removal capacity of these systems.

11.
Sci Total Environ ; 596-597: 465-480, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28458222

RESUMEN

River ecosystems are subject to multiple stressors that affect their structure and functioning. Ecosystem structure refers to characteristics such as channel form, water quality or the composition of biological communities, whereas ecosystem functioning refers to processes such as metabolism, organic matter decomposition or secondary production. Structure and functioning respond in contrasting and complementary ways to environmental stressors. Moreover, assessing the response of ecosystem functioning to stressors is critical to understand the effects on the ecosystem services that produce direct benefits to humans. Yet, there is more information on structural than on functional parameters, and despite the many approaches available to measure river ecosystem processes, structural approaches are more widely used, especially in management. One reason for this discrepancy is the lack of synthetic studies analyzing river ecosystem functioning in a way that is useful for both scientists and managers. Here, we present a synthesis of key river ecosystem processes, which provides a description of the main characteristics of each process, including criteria guiding their measurement as well as their respective sensitivity to stressors. We also discuss the current limitations, potential improvements and future steps that the use of functional measures in rivers needs to face.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Ríos , Calidad del Agua
12.
J Surg Oncol ; 114(7): 789-795, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27709626

RESUMEN

BACKGROUND AND OBJECTIVES: Previous studies showed good short-term Quality of life (QOL) after Transoral Laser Microsurgery (TLM) for laryngeal cancer. Here, we aimed to evaluate QOL after TLM in the long-term. METHODS: Prospective longitudinal study. Sixty-two consecutive disease-free patients were evaluated using UW-QOL v4 and SF-12 questionnaires, 1 and 5 years after TLM. Changes over time were assessed according to age, location, and tumor size. Long-term VHI-10 was also evaluated. RESULTS: The mean follow-up time was 5.41 ± 2.02 years. No differences in the global UW-QOL score were observed between 1 and 5 years after TLM (1135.00 vs. 1127.20; P = 0.4). Activity worsened slightly in the long-term (93.03 vs. 87.70; P = 0.02). Forty-two and 58% of the patients reported that their health 1 and 5 years after treatment was much better than prior to diagnosis. Initially, 3.3% considered their health much worse, which was reduced to 1.7% at 5 years. SF-12 scores remained unchanged for both physical and mental aspects (P > 0.05). The VHI-10 was 3.81 ± 5.7 for supraglottic and 7.2 ± 9.6 for glottic tumors. CONCLUSION: Patients treated with TLM present a very good long-term QOL. Only activity deteriorates over time, while voice and swallowing remain satisfactory in the majority of patients. J. Surg. Oncol. 2016;114:789-795. © 2016 2016 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Laríngeas/cirugía , Terapia por Láser , Microcirugia , Procedimientos Quirúrgicos Mínimamente Invasivos , Calidad de Vida , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Indicadores de Salud , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Encuestas y Cuestionarios , Resultado del Tratamiento
13.
Ecology ; 97(1): 133-44, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27008783

RESUMEN

Monitoring nutrient concentrations at fine-scale temporal resolution contributes to a better understanding of nutrient cycling in stream ecosystems. However, the mechanisms underlying fine-scale nutrient dynamics and its implications for budget catchent fluxes are still poorly understood. To gain understanding of patterns and controls of fine-scale stream nitrogen (N) dynamics and to assess how they affect hydrological N fluxes, we explored diel variation in stream nitrate (NO3-) concentration along a headwater stream with increasing riparian area and channel width. At the downstream site, the highest day-night variations occurred in early spring, when stream NO3- concentrations were 13% higher at night than at daytime. Such day-night variations were strongly related to daily light inputs (R2 = 0.74) and gross primary production (GPP; R2 = 0.74), and they showed an excellent fit with day-night NO- variations predicted from GPP (R2 = 0.85). These results suggest that diel fluctuations in stream NO3- concentration were mainly driven by photoautotrophic N uptake. Terrestrial influences were discarded because no simultaneous diel variations in stream discharge, riparian groundwater level, or riparian solute concentration were observed. In contrast to the downstream site, no diel variations in NO3- concentration occurred at the upstream site, likely because water temperature was colder (10 degrees C vs. 12 degrees C) and light availability was lower (4 vs. 9 mol x m(-2) x d(-1)). Although daily GPP was between 10- and 100-fold lower than daily respiration, photoautotrophic N uptake contributed to a 10% reduction in spring NO3- loads at the downstream site. Our study clearly shows that the activity of photoautotrophs can substantially change over time and along the stream continuum in response to key environmental drivers such as light and temperature, and further, that its capacity to regulate diel and seasonal N fluxes can be important even in low-productivity streams.


Asunto(s)
Bosques , Nitrógeno/química , Ríos/química , Estaciones del Año , Monitoreo del Ambiente , Luz , Nitratos/química , España , Temperatura , Factores de Tiempo , Árboles/fisiología
14.
Oecologia ; 176(4): 1111-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25214242

RESUMEN

Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately. Here, we examined C and N flow from streamwater and leaf litter to microbial biofilms during decomposition. We used isotopically enriched leaves ((13)C and (15)N) from two riparian foundation tree species: fast-decomposing Populus fremontii and slow-decomposing Populus angustifolia, which differed in their concentration of recalcitrant compounds. We adapted the isotope pool dilution method to estimate gross elemental fluxes into litter microbes. Three key findings emerged: litter type strongly affected biomass and stoichiometry of microbial assemblages growing on litter; the proportion of C and N in microorganisms derived from the streamwater, as opposed to the litter, did not differ between litter types, but increased throughout decomposition; gross immobilization of N from the streamwater was higher for P. fremontii compared to P. angustifolia, probably as a consequence of the higher microbial biomass on P. fremontii. In contrast, gross immobilization of C from the streamwater was higher for P. angustifolia, suggesting that dissolved organic C in streamwater was used as an additional energy source by microbial assemblages growing on slow-decomposing litter. These results indicate that biofilms on decomposing litter have specific element requirements driven by litter characteristics, which might have implications for whole-stream nutrient retention.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Carbono/metabolismo , Microbiota , Nitrógeno/metabolismo , Hojas de la Planta/química , Populus/química , Ríos/química , Biomasa , Ciclo del Carbono , Isótopos de Carbono/metabolismo , Ecosistema , Ciclo del Nitrógeno , Isótopos de Nitrógeno/metabolismo , Hojas de la Planta/microbiología , Populus/clasificación , Ríos/microbiología , Especificidad de la Especie , Árboles/química
15.
Environ Sci Technol ; 48(12): 6612-9, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24837817

RESUMEN

Understanding the variability of the natural abundance in nitrogen stable isotopes (expressed as δ(15)N) of primary uptake compartments (PUCs; e.g., epilithon or macrophytes) is important due to the multiple applications of stable isotopes in freshwater research and can give insights into environmental and anthropogenic factors controlling N dynamics in streams. While previous research has shown how δ(15)N of PUCs varies with δ(15)N of dissolved inorganic N (DIN) among streams, less is known about how δ(15)N of PUCs varies over time. Here, we examined monthly variation of δ(15)N of PUCs and of DIN species (nitrate and ammonium) over a year, and compared it among streams with contrasting human impacts and PUC types. Our results showed no evidence of isotopic seasonal patterns. Temporal variability in δ(15)N-PUCs increased with human impact, being the highest in the urban stream, probably influenced by the high variability of δ(15)N-DIN. Among compartments, in-stream PUCs characterized by fast turnover rates, such as filamentous algae, showed the highest temporal variability in δ(15)N values (from -3.6 to 23.2 ‰). Our study elucidates some of the environmental and biological controls of temporal variability of δ(15)N in streams, which should be taken into account when using stable isotopes as an ecological tool.


Asunto(s)
Monitoreo del Ambiente , Actividades Humanas , Nitrógeno/análisis , Ríos/química , Carbono/análisis , Humanos , Compuestos Inorgánicos/análisis , Isótopos de Nitrógeno/análisis , Solubilidad , España , Factores de Tiempo
16.
Environ Sci Technol ; 47(18): 10155-62, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23930789

RESUMEN

High variability in the natural abundance of nitrogen stable isotopes (δ(15)N) has been reported for primary uptake compartments (PUCs; e.g., epilithon, filamentous algae, bryophytes, macrophytes) in human-impacted aquatic ecosystems, but the origin of this variability is not yet well understood. We examined how δ(15)N of different PUC types relate to δ(15)N of dissolved inorganic nitrogen (DIN) species (nitrate and ammonium) and to the stream nutrient concentrations in which they grow. We selected 25 reaches located across the fluvial network of La Tordera catchment (NE Spain, 868.5 km(2)), encompassing a gradient of human pressures from headwaters to the river valley. δ(15)N-PUC variability was mostly explained by location within the fluvial network and was strongly related to the δ(15)N of DIN species, especially of ammonium. Models were stronger for PUCs growing within the stream channel and thus using streamwater as their main source of nutrients. Regression models including nutrient concentrations improved the prediction power for δ(15)N-PUCs, suggesting that nutrient concentrations and stoichiometry cannot be ignored in explaining the natural abundance of nitrogen isotopes in PUCs. These results provide insights into what controls variability in δ(15)N of PUCs within a stream network, with implications for the application of stables isotopes as an ecological tool.


Asunto(s)
Compuestos de Amonio/análisis , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , España
17.
Sci Total Environ ; 409(5): 957-67, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21185586

RESUMEN

We examined the effect of point-source inputs from wastewater treatment plants (WWTP) on in-stream uptake of ammonium, nitrate and phosphate and compared it between two streams draining catchments with contrasting land use. The selected streams were La Tordera and Gurri (NE Spain), draining a forest- and an agriculture-dominated catchment, respectively. In each stream, we compared nutrient uptake metrics, estimated from nutrient additions, between two reaches located upstream and downstream of a WWTP input. Measurements were done on 8-9 dates during 2002-2003. In La Tordera, the point-source increased concentrations of all studied nutrients; whereas in Gurri, this effect was less evident. Point-source effects on nutrient uptake differed between the two streams, and among solutes. In La Tordera, uptake lengths (S(w)) of ammonium and phosphate averaged hundreds of meters above the point-source, and increased (i.e., decreased uptake efficiency) 4 and 5 times, respectively, below the point-source. S(w) of nitrate was ≥2km regardless of reach location. In Gurri, S(w) of all studied nutrients was within the km range in the two reaches. In this stream, diffuse nutrient inputs from adjacent fields may overwhelm the local effect of the point-source input. Uptake velocities (v(f)) of the studied nutrients ranged between 10EXP(-6) and 10EXP(-4)m/s in the two streams, and were similar between the two reaches in each stream. However, phosphate v(f) decreased under increasing concentrations following a power function. This trend remained significant when combining our results with those compiled from literature, suggesting the efficiency loss response may be a general trend for phosphate across streams. The relative increases in uptake rates (U) below the point-source were proportional to the relative point-source contribution to downstream nutrient loads, especially for ammonium and nitrate. However, the increases in U were not enough to compensate for the increases in nutrient loads downstream of the WWTP input.


Asunto(s)
Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agricultura Forestal , Región Mediterránea , España , Eliminación de Residuos Líquidos , Contaminación Química del Agua/estadística & datos numéricos
18.
Sci Total Environ ; 347(1-3): 217-29, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15878611

RESUMEN

We examined net changes in ammonium-Nitrogen (NH(4)(+)-N), nitrate-Nitrogen (NO(3)(-)-N), dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP), and dissolved organic carbon (DOC) chloride-corrected ambient concentrations along a reach located below a wastewater treatment plant (WWTP) input in a non-agricultural (12 dates) and an agricultural (6 dates) stream. Based on those net changes, we estimated processing length (Snet) and mass transfer coefficient (Vf) of the cited nutrients. In the agricultural stream, results suggest that diffuse nutrient inputs from adjacent agricultural fields had a greater effect on water chemistry than the WWTP input, and probably overwhelmed the stream capacity to retain and transform nutrients. In the non-agricultural stream we observed consistent longitudinal trends below the WWTP input only for NH(4)(+)-N and NO(3)(-)-N. The tight coupling between longitudinal NH(4)(+)-N decreases and NO(3)(-)-N increases in the non-agricultural stream, and lack of longitudinal trends of DIN on most dates suggest that NH(4)(+)-N from the WWTP input was being nitrified along the reach. These results suggest that WWTP inputs favor conditions to support hot spots for chemoautotrophic activity.


Asunto(s)
Agricultura , Ríos , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Carbono/análisis , Monitoreo del Ambiente , Nitratos/análisis , Nitrógeno/análisis , Fósforo/análisis , Compuestos de Amonio Cuaternario/análisis , España , Abastecimiento de Agua
19.
J Environ Qual ; 33(1): 285-93, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14964383

RESUMEN

We tested the effect of nutrient inputs from wastewater treatment plants (WWTPs) on stream nutrient retention efficiency by examining the longitudinal patterns of ammonium, nitrate, and phosphate concentrations downstream of WWTP effluents in 15 streams throughout Catalonia (Spain). We hypothesized that large nutrient loadings would saturate stream communities, lowering nutrient retention efficiency (i.e., nutrient retention relative to nutrient flux) relative to less polluted streams. Longitudinal variation in ambient nutrient concentration reflected the net result of physical, chemical, or biological uptake and release processes. Therefore, gradual increases in nutrient concentration indicate that the stream acts as a net source of nutrients to downstream environments, whereas gradual declines indicate that the stream acts as a net sink. In those streams where gradual declines in nutrient concentration were observed, we calculated the nutrient uptake length as an indicator of the stream nutrient retention efficiency. No significant decline was found in dilution-corrected concentrations of dissolved inorganic nitrogen (DIN) and phosphate in 40 and 45% of streams, respectively. In the remaining streams, uptake length (estimated based on the decline of nutrient concentrations at ambient levels) ranged from 0.14 to 29 km (DIN), and from 0.14 to 14 km (phosphate). Overall, these values are longer (lower retention efficiency) than those from nonpolluted streams of similar size, supporting our hypothesis, and suggest that high nutrient loads affect fluvial ecosystem function. This study demonstrates that the efficiency of stream ecosystems to remove nutrients has limitations because it can be significantly altered by the quantity and quality of the receiving water.


Asunto(s)
Agua Dulce/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua , Purificación del Agua/métodos , Monitoreo del Ambiente/métodos , Humanos , Nitratos/química , Fosfatos/química , Compuestos de Amonio Cuaternario/química , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...