Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Thyroid ; 30(1): 147-160, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31709926

RESUMEN

Background: A novel form of thyroid hormone (TH) signaling is represented by 3-iodothyronamine (T1AM), an endogenous TH derivative that interacts with specific molecular targets, including trace amine-associated receptor 1 (TAAR1), and induces pro-learning and anti-amnestic effects in mice. Dysregulation of TH signaling has long been hypothesized to play a role in Alzheimer's disease (AD). In the present investigation, we explored the neuroprotective role of T1AM in beta amyloid (Aß)-induced synaptic and behavioral impairment, focusing on the entorhinal cortex (EC), an area that is affected early by AD pathology. Methods: Field potentials were evoked in EC layer II, and long-term potentiation (LTP) was elicited by high frequency stimulation (HFS). T1AM (5 µM) and/or Aß(1-42) (200 nM), were administered for 10 minutes, starting 5 minutes before HFS. Selective TAAR1 agonist RO5166017 (250 nM) and TAAR1 antagonist EPPTB (5 nM) were also used. The electrophysiological experiments were repeated in EC-slices taken from a mouse model of AD (mutant human amyloid precursor protein [mhAPP], J20 line). We also assessed the in vivo effects of T1AM on EC-dependent associative memory deficits, which were detected in mhAPP mice by behavioral evaluations based on the novel-object recognition paradigm. TAAR1 expression was determined by Western blot, whereas T1AM and its metabolite 3-iodothyroacetic acid (TA1) were assayed by high-performance liquid chromatography coupled to mass spectrometry. Results: We demonstrate the presence of endogenous T1AM and TAAR1 in the EC of wild-type and mhAPP mice. Exposure to Aß(1-42) inhibited LTP, and T1AM perfusion (at a concentration of 5 µM, leading to an actual concentration in the perfusion buffer ranging from 44 to 298 nM) restored it, whereas equimolar amounts of 3,5,3'-triiodo-L-thyronine (T3) and TA1 were ineffective. The response to T1AM was abolished by the TAAR1 antagonist EPPTB, whereas it was mimicked by the TAAR1 agonist RO5166017. In the EC of APPJ20 mice, LTP could not be elicited, but it was rescued by T1AM. The intra-cerebro-ventricular administration of T1AM (0.89 µg/kg) also restored recognition memory that was impaired in mhAPP mice. Conclusions: Our results suggest that T1AM and TAAR1 are part of an endogenous system that can be modulated to prevent synaptic and behavioral deficits associated with Aß-related toxicity.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Corteza Entorrinal/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Tironinas/farmacología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Corteza Entorrinal/fisiología , Potenciales Evocados/fisiología , Ratones , Ratones Transgénicos
2.
Int J Mol Sci ; 20(16)2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31434215

RESUMEN

3-Iodothyronamine (T1AM) and its synthetic analog SG-2 are rapidly emerging as promising drivers of cellular metabolic reprogramming. Our recent research indicates that in obese mice a sub-chronic low dose T1AM treatment increased lipolysis, associated with significant weight loss independent of food consumption. The specific cellular mechanism of T1AM's lipolytic effect and its site of action remains unknown. First, to study the mechanism used by T1AM to gain entry into cells, we synthesized a fluoro-labeled version of T1AM (FL-T1AM) by conjugating it to rhodamine (TRITC) and analyzed its cellular uptake and localization in 3T3-L1 mouse adipocytes. Cell imaging using confocal microscopy revealed a rapid intercellular uptake of FL-T1AM into mitochondria without localization to the lipid droplet or nucleus of mature adipocytes. Treatment of 3T3-L1 adipocytes with T1AM and SG-2 resulted in decreased lipid accumulation, the latter showing a significantly higher potency than T1AM (10 µM vs. 20 µM, respectively). We further examined the effects of T1AM and SG-2 on liver HepG2 cells. A significant decrease in lipid accumulation was observed in HepG2 cells treated with T1AM or SG-2, due to increased lipolytic activity. This was confirmed by accumulation of glycerol in the culture media and through activation of the AMPK/ACC signaling pathways.


Asunto(s)
Tironinas/farmacología , Células 3T3-L1 , Animales , Reprogramación Celular/efectos de los fármacos , Glicerol/metabolismo , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipólisis/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
3.
Int J Mol Sci ; 19(5)2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29786646

RESUMEN

Obesity is a complex disease associated with environmental and genetic factors. 3-Iodothyronamine (T1AM) has revealed great potential as an effective weight loss drug. We used metabolomics and associated transcriptional gene and protein expression analysis to investigate the tissue specific metabolic reprogramming effects of subchronic T1AM treatment at two pharmacological daily doses (10 and 25 mg/kg) on targeted metabolic pathways. Multi-analytical results indicated that T1AM at 25 mg/kg can act as a novel master regulator of both glucose and lipid metabolism in mice through sirtuin-mediated pathways. In liver, we observed an increased gene and protein expression of Sirt6 (a master gene regulator of glucose) and Gck (glucose kinase) and a decreased expression of Sirt4 (a negative regulator of fatty acids oxidation (FAO)), whereas in white adipose tissue only Sirt6 was increased. Metabolomics analysis supported physiological changes at both doses with most increases in FAO, glycolysis indicators and the mitochondrial substrate, at the highest dose of T1AM. Together our results suggest that T1AM acts through sirtuin-mediated pathways to metabolically reprogram fatty acid and glucose metabolism possibly through small molecules signaling. Our novel mechanistic findings indicate that T1AM has a great potential as a drug for the treatment of obesity and possibly diabetes.


Asunto(s)
Fármacos Antiobesidad/farmacología , Proteínas Mitocondriales/genética , Obesidad/metabolismo , Sirtuinas/genética , Tironinas/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Fármacos Antiobesidad/uso terapéutico , Ácidos Grasos/metabolismo , Femenino , Quinasas del Centro Germinal , Glucosa/metabolismo , Glucólisis , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Obesidad/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Sirtuinas/metabolismo , Tironinas/uso terapéutico
4.
Physiol Rep ; 5(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28082426

RESUMEN

Complex diseases such as polycystic ovary syndrome (PCOS) are associated with intricate pathophysiological, hormonal, and metabolic feedbacks that make their early diagnosis challenging, thus increasing the prevalence risks for obesity, cardiovascular, and fatty liver diseases. To explore the crosstalk between endocrine and lipid metabolic pathways, we administered 3-iodothyronamine (T1AM), a natural analog of thyroid hormone, in a mouse model of PCOS and analyzed plasma and tissue extracts using multidisciplinary omics and biochemical approaches. T1AM administration induces a profound tissue-specific antilipogenic effect in liver and muscle by lowering gene expression of key regulators of lipid metabolism, PTP1B and PLIN2, significantly increasing metabolites (glucogenic, amino acids, carnitine, and citrate) levels, while enhancing protection against oxidative stress. In contrast, T1AM has an opposing effect on the regulation of estrogenic pathways in the ovary by upregulating STAR, CYP11A1, and CYP17A1. Biochemical measurements provide further evidence of significant reduction in liver cholesterol and triglycerides in post-T1AM treatment. Our results shed light onto tissue-specific metabolic vs. hormonal pathway interactions, thus illuminating the intricacies within the pathophysiology of PCOS This study opens up new avenues to design drugs for targeted therapeutics to improve quality of life in complex metabolic diseases.


Asunto(s)
Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/genética , Redes y Vías Metabólicas/efectos de los fármacos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Tironinas/administración & dosificación , Animales , Colesterol/metabolismo , Femenino , Expresión Génica/genética , Hígado/metabolismo , Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas/genética , Metabolómica/métodos , Ratones , Músculos/metabolismo , Obesidad/metabolismo , Ovario/metabolismo , Estrés Oxidativo/efectos de los fármacos , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/fisiopatología , Calidad de Vida , Tironinas/metabolismo , Tironinas/farmacología , Triglicéridos/metabolismo
5.
Mol Cell Endocrinol ; 458: 149-155, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069535

RESUMEN

Thyronamines are a novel class of endogenous signaling compounds, structurally related to thyroid hormones (THs). Specific thyronamines, particularly 3-iodothyronamine (T1AM), stimulate with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor, and may also interact with other TAAR subtypes (particularly TAAR5), adrenergic receptors (particularly α2 receptors), amine transporters, and mitochondrial proteins. In addition to its structural similarities with THs, T1AM also contains the arylethylamine scaffold as in monoamine neurotransmitters, implicating an intriguing role for T1AM as both a neuromodulator and a hormone-like molecule constituting a part of thyroid hormone signaling. A large number of T1AM derivatives have already been synthesized. We discuss the different chemical strategies followed to obtain thyronamine analogues, their potency at TAAR1, and their structure-activity relationship. Preliminary characterization of the functional effects of these synthetic compounds is also provided.


Asunto(s)
Aminas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Aminas/química , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Estructura Molecular , Transducción de Señal , Relación Estructura-Actividad , Tironinas/química , Tironinas/farmacología , Investigación Biomédica Traslacional
6.
Front Pharmacol ; 8: 905, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311919

RESUMEN

3-Iodothyronamine (T1AM) is an endogenous high-affinity ligand of the trace amine-associated receptor 1 (TAAR1), detected in mammals in many organs, including the brain. Recent evidence indicates that pharmacological TAAR1 activation may offer a novel therapeutic option for the treatment of a wide range of neuropsychiatric and metabolic disorders. To assess potential neuroprotection by TAAR1 agonists, in the present work, we initially investigated whether T1AM and its corresponding 3-methylbiaryl-methane analog SG-2 can improve learning and memory when systemically administered to mice at submicromolar doses, and whether these effects are modified under conditions of MAO inhibition by clorgyline. Our results revealed that when i.p. injected to mice, both T1AM and SG-2 produced memory-enhancing and hyperalgesic effects, while increasing ERK1/2 phosphorylation and expression of transcription factor c-fos. Notably, both compounds appeared to rely on the action of ubiquitous enzymes MAO to produce the corresponding oxidative metabolites that were then able to activate the histaminergic system. Since autophagy is key for neuronal plasticity, in a second line of experiments we explored whether T1AM and synthetic TAAR1 agonists SG1 and SG2 were able to induce autophagy in human glioblastoma cell lines (U-87MG). After treatment of U-87MG cells with 1 µM T1AM, SG-1, SG-2 transmission electron microscopy (TEM) and immunofluorescence (IF) showed a significant time-dependent increase of autophagy vacuoles and microtubule-associated protein 1 light chain 3 (LC3). Consistently, Western blot analysis revealed a significant increase of the LC3II/LC3I ratio, with T1AM and SG-1 being the most effective agents. A decreased level of the p62 protein was also observed after treatment with T1AM and SG-1, which confirms the efficacy of these compounds as autophagy inducers in U-87MG cells. In the process to dissect which pathway induces ATG, the effects of these compounds were evaluated on the PI3K-AKT-mTOR pathway. We found that 1 µM T1AM, SG-1 and SG-2 decreased pAKT/AKT ratio at 0.5 and 4 h after treatment, suggesting that autophagy is induced by inhibiting mTOR phosphorylation by PI3K-AKT-mTOR pathway. In conclusion, our study shows that T1AM and thyronamine-like derivatives SG-1 and SG-2 might represent valuable tools to therapeutically intervene with neurological disorders.

7.
J Med Chem ; 59(21): 9825-9836, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27731647

RESUMEN

The trace amine-associated receptor 1 (TAAR1) is a G-protein-coupled receptors (GPCR) potently activated by a variety of molecules besides trace amines (TAs), including thyroid hormone-derivatives like 3-iodothyronamine (T1AM), catechol-O-methyltransferase products like 3-methoxytyramine, and amphetamine-related compounds. Accordingly, TAAR1 is considered a promising target for medicinal development. To gain more insights into TAAR1 physiological functions and validation of its therapeutic potential, we recently developed a new class of thyronamine-like derivatives. Among them compound SG2 showed high affinity and potent agonist activity at mouse TAAR1. In the present work, we describe design, synthesis, and SAR study of a new series of compounds (1-16) obtained by introducing specific structural changes at key points of our lead compound SG2 skeleton. Five of the newly synthesized compounds displayed mTAAR1 agonist activity higher than both SG2 and T1AM. Selected diphenylmethane analogues, namely 1 and 2, showed potent functional activity in in vitro and in vivo models.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diseño de Fármacos , Receptores Acoplados a Proteínas G/agonistas , Animales , Compuestos de Bencidrilo/síntesis química , Compuestos de Bencidrilo/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Células Hep G2 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
8.
Eur Thyroid J ; 5(1): 27-34, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27099836

RESUMEN

BACKGROUND AND OBJECTIVE: The present study was aimed at determining the effects of experimental hypothyroidism and hyperthyroidism on tissue thyroid hormones by a mass spectrometry-based technique. METHODS: Rats were subjected to propylthiouracil treatment or administration of exogenous triiodothyronine (T3) or thyroxine (T4). Tissue T3 and T4 were measured by liquid chromatography tandem mass spectrometry in the heart, liver, kidney, visceral and subcutaneous adipose tissue, and brain. RESULTS: Baseline tissue T3 and T4 concentrations ranged from 0.2 to 20 pmol ∙ g(-1) and from 3 to 125 pmol ∙ g(-1), respectively, with the highest values in the liver and kidney, and the lowest values in the adipose tissue. The T3/T4 ratio (expressed as a percentage) was in the 7-20% range in all tissues except the brain, where it averaged 75%. In hypothyroidism, tissue T3 was more severely reduced than serum free T3, averaging 1-6% of the baseline versus 30% of the baseline. The extent of tissue T3 reduction, expressed as percentage of the baseline, was not homogeneous (p < 0.001), with liver = kidney > brain > heart > adipose tissue. The tissue T3/T4 ratio significantly increased in all organs except the kidney, averaging 330% in the brain and 50-90% in the other tissues. By contrast, exogenous T3 and T4 administration produced similar increases in serum free T3 and in tissue T3, and the relative changes were not significantly different between different tissues. CONCLUSIONS: While the response to increased thyroid hormones availability was similar in all tissues, decreased thyroid hormone availability induced compensatory responses, leading to a significant mismatch between changes in serum and in specific tissues.

9.
J Med Chem ; 58(12): 5096-107, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26010728

RESUMEN

Trace amine associated receptor 1 (TAAR1) is a G protein coupled receptor (GPCR) expressed in brain and periphery activated by a wide spectrum of agonists that include, but are not limited to, trace amines (TAs), amphetamine-like psychostimulants, and endogenous thyronamines such as thyronamine (T0AM) and 3-iodothyronamine (T1AM). Such polypharmacology has made it challenging to understand the role and the biology of TAAR1. In an effort to understand the molecular basis of TAAR1 activation, we rationally designed and synthesized a small family of thyronamine derivatives. Among them, compounds 2 and 3 appeared to be a good mimic of the parent endogenous thyronamine, T0AM and T1AM, respectively, both in vitro and in vivo. Thus, these compounds offer suitable tools for studying the physiological roles of mouse TAAR1 and could represent the starting point for the development of more potent and selective TAAR1 ligands.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Glucemia/metabolismo , Diseño de Fármacos , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Ratas Wistar , Receptores Acoplados a Proteínas G/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tironinas/química , Tironinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...