Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
ArXiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38495569

RESUMEN

Conditional testing via the knockoff framework allows one to identify -- among large number of possible explanatory variables -- those that carry unique information about an outcome of interest, and also provides a false discovery rate guarantee on the selection. This approach is particularly well suited to the analysis of genome wide association studies (GWAS), which have the goal of identifying genetic variants which influence traits of medical relevance. While conditional testing can be both more powerful and precise than traditional GWAS analysis methods, its vanilla implementation encounters a difficulty common to all multivariate analysis methods: it is challenging to distinguish among multiple, highly correlated regressors. This impasse can be overcome by shifting the object of inference from single variables to groups of correlated variables. To achieve this, it is necessary to construct "group knockoffs." While successful examples are already documented in the literature, this paper substantially expands the set of algorithms and software for group knockoffs. We focus in particular on second-order knockoffs, for which we describe correlation matrix approximations that are appropriate for GWAS data and that result in considerable computational savings. We illustrate the effectiveness of the proposed methods with simulations and with the analysis of albuminuria data from the UK Biobank. The described algorithms are implemented in an open-source Julia package Knockoffs.jl, for which both R and Python wrappers are available.

2.
ArXiv ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38463500

RESUMEN

Identifying which variables do influence a response while controlling false positives pervades statistics and data science. In this paper, we consider a scenario in which we only have access to summary statistics, such as the values of marginal empirical correlations between each dependent variable of potential interest and the response. This situation may arise due to privacy concerns, e.g., to avoid the release of sensitive genetic information. We extend GhostKnockoffs He et al. [2022] and introduce variable selection methods based on penalized regression achieving false discovery rate (FDR) control. We report empirical results in extensive simulation studies, demonstrating enhanced performance over previous work. We also apply our methods to genome-wide association studies of Alzheimer's disease, and evidence a significant improvement in power.

3.
bioRxiv ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464202

RESUMEN

Understanding the causal genetic architecture of complex phenotypes is essential for future research into disease mechanisms and potential therapies. Here, we present a novel framework for genome-wide detection of sets of variants that carry non-redundant information on the phenotypes and are therefore more likely to be causal in a biological sense. Crucially, our framework requires only summary statistics obtained from standard genome-wide marginal association testing. The described approach, implemented in open-source software, is also computationally efficient, requiring less than 15 minutes on a single CPU to perform genome-wide analysis. Through extensive genome-wide simulation studies, we show that the method can substantially outperform usual two-stage marginal association testing and fine-mapping procedures in precision and recall. In applications to a meta-analysis of ten large-scale genetic studies of Alzheimer's disease (AD), we identified 82 loci associated with AD, including 37 additional loci missed by conventional GWAS pipeline. The identified putative causal variants achieve state-of-the-art agreement with massively parallel reporter assays and CRISPR-Cas9 experiments. Additionally, we applied the method to a retrospective analysis of 67 large-scale GWAS summary statistics since 2013 for a variety of phenotypes. Results reveal the method's capacity to robustly discover additional loci for polygenic traits and pinpoint potential causal variants underpinning each locus beyond conventional GWAS pipeline, contributing to a deeper understanding of complex genetic architectures in post-GWAS analyses.

4.
Commun Med (Lond) ; 4(1): 26, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383761

RESUMEN

BACKGROUND: Geographical variations in mood and psychotic disorders have been found in upper-income countries. We looked for geographic variation in these disorders in Colombia, a middle-income country. We analyzed electronic health records from the Clínica San Juan de Dios Manizales (CSJDM), which provides comprehensive mental healthcare for the one million inhabitants of Caldas. METHODS: We constructed a friction surface map of Caldas and used it to calculate the travel-time to the CSJDM for 16,295 patients who had received an initial diagnosis of mood or psychotic disorder. Using a zero-inflated negative binomial regression model, we determined the relationship between travel-time and incidence, stratified by disease severity. We employed spatial scan statistics to look for patient clusters. RESULTS: We show that travel-times (for driving) to the CSJDM are less than 1 h for ~50% of the population and more than 4 h for ~10%. We find a distance-decay relationship for outpatients, but not for inpatients: for every hour increase in travel-time, the number of expected outpatient cases decreases by 20% (RR = 0.80, 95% confidence interval [0.71, 0.89], p = 5.67E-05). We find nine clusters/hotspots of inpatients. CONCLUSIONS: Our results reveal inequities in access to healthcare: many individuals requiring only outpatient treatment may live too far from the CSJDM to access healthcare. Targeting of resources to comprehensively identify severely ill individuals living in the observed hotspots could further address treatment inequities and enable investigations to determine factors generating these hotspots.


The frequencies of mental disorders vary by geographic region. Investigating such variations may lead to more equitable access to mental healthcare and to scientific discoveries that reveal specific localized factors that contribute to the causes of mental illness. This study examined the frequency of three disorders with a major impact on public health ­ schizophrenia, bipolar disorder, and major depressive disorder ­ by analyzing electronic health records from a hospital providing comprehensive mental health care for a large region in Colombia. We show that individuals receiving outpatient care mainly live relatively near the facility. Those receiving inpatient care live throughout the region, but cluster in a few scattered locations. Future research could lead to strategies for more equitable provision of mental healthcare in Colombia and identify environmental or genetic factors that affect the likelihood that someone will develop one of these disorders.

5.
J Am Stat Assoc ; 118(541): 165-176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346227

RESUMEN

Scientific hypotheses in a variety of applications have domain-specific structures, such as the tree structure of the International Classification of Diseases (ICD), the directed acyclic graph structure of the Gene Ontology (GO), or the spatial structure in genome-wide association studies. In the context of multiple testing, the resulting relationships among hypotheses can create redundancies among rejections that hinder interpretability. This leads to the practice of filtering rejection sets obtained from multiple testing procedures, which may in turn invalidate their inferential guarantees. We propose Focused BH, a simple, flexible, and principled methodology to adjust for the application of any pre-specified filter. We prove that Focused BH controls the false discovery rate under various conditions, including when the filter satisfies an intuitive monotonicity property and the p-values are positively dependent. We demonstrate in simulations that Focused BH performs well across a variety of settings, and illustrate this method's practical utility via analyses of real datasets based on ICD and GO.

6.
Nat Commun ; 13(1): 7209, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418338

RESUMEN

Recent advances in genome sequencing and imputation technologies provide an exciting opportunity to comprehensively study the contribution of genetic variants to complex phenotypes. However, our ability to translate genetic discoveries into mechanistic insights remains limited at this point. In this paper, we propose an efficient knockoff-based method, GhostKnockoff, for genome-wide association studies (GWAS) that leads to improved power and ability to prioritize putative causal variants relative to conventional GWAS approaches. The method requires only Z-scores from conventional GWAS and hence can be easily applied to enhance existing and future studies. The method can also be applied to meta-analysis of multiple GWAS allowing for arbitrary sample overlap. We demonstrate its performance using empirical simulations and two applications: (1) a meta-analysis for Alzheimer's disease comprising nine overlapping large-scale GWAS, whole-exome and whole-genome sequencing studies and (2) analysis of 1403 binary phenotypes from the UK Biobank data in 408,961 samples of European ancestry. Our results demonstrate that GhostKnockoff can identify putatively functional variants with weaker statistical effects that are missed by conventional association tests.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Causalidad , Mapeo Cromosómico
7.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580220

RESUMEN

We present a comprehensive statistical framework to analyze data from genome-wide association studies of polygenic traits, producing interpretable findings while controlling the false discovery rate. In contrast with standard approaches, our method can leverage sophisticated multivariate algorithms but makes no parametric assumptions about the unknown relation between genotypes and phenotype. Instead, we recognize that genotypes can be considered as a random sample from an appropriate model, encapsulating our knowledge of genetic inheritance and human populations. This allows the generation of imperfect copies (knockoffs) of these variables that serve as ideal negative controls, correcting for linkage disequilibrium and accounting for unknown population structure, which may be due to diverse ancestries or familial relatedness. The validity and effectiveness of our method are demonstrated by extensive simulations and by applications to the UK Biobank data. These analyses confirm our method is powerful relative to state-of-the-art alternatives, while comparisons with other studies validate most of our discoveries. Finally, fast software is made available for researchers to analyze Biobank-scale datasets.


Asunto(s)
Genoma Humano/genética , Algoritmos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Desequilibrio de Ligamiento/genética , Herencia Multifactorial/genética , Fenotipo , Programas Informáticos
8.
Transl Psychiatry ; 11(1): 486, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552056

RESUMEN

Structural variation in the complement 4 gene (C4) confers genetic risk for schizophrenia. The variation includes numbers of the increased C4A copy number, which predicts increased C4A mRNA expression. C4-anaphylatoxin (C4-ana) is a C4 protein fragment released upon C4 protein activation that has the potential to change the blood-brain barrier (BBB). We hypothesized that elevated plasma levels of C4-ana occur in individuals with schizophrenia (iSCZ). Blood was collected from 15 iSCZ with illness duration < 5 years and from 14 healthy controls (HC). Plasma C4-ana was measured by radioimmunoassay. Other complement activation products C3-ana, C5-ana, and terminal complement complex (TCC) were also measured. Digital-droplet PCR was used to determine C4 gene structural variation state. Recombinant C4-ana was added to primary brain endothelial cells (BEC) and permeability was measured in vitro. C4-ana concentration was elevated in plasma from iSCZ compared to HC (mean = 654 ± 16 ng/mL, 557 ± 94 respectively, p = 0.01). The patients also carried more copies of the C4AL gene and demonstrated a positive correlation between plasma C4-ana concentrations and C4A gene copy number. Furthermore, C4-ana increased the permeability of a monolayer of BEC in vitro. Our findings are consistent with a specific role for C4A protein in schizophrenia and raise the possibility that its activation product, C4-ana, increases BBB permeability. Exploratory analyses suggest the novel hypothesis that the relationship between C4-ana levels and C4A gene copy number could also be altered in iSCZ, suggesting an interaction with unknown genetic and/or environmental risk factors.


Asunto(s)
Complemento C4 , Esquizofrenia , Complemento C4/genética , Complemento C4a/genética , Células Endoteliales , Predisposición Genética a la Enfermedad , Humanos , Esquizofrenia/sangre , Esquizofrenia/genética
9.
Biometrika ; 108(3): 575-590, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36825068

RESUMEN

We introduce a multiple testing procedure that controls global error rates at multiple levels of resolution. Conceptually, we frame this problem as the selection of hypotheses that are organized hierarchically in a tree structure. We describe a fast algorithm and prove that it controls relevant error rates given certain assumptions on the dependence between the p-values. Through simulations, we demonstrate that the proposed procedure provides the desired guarantees under a range of dependency structures and that it has the potential to gain power over alternative methods. Finally, we apply the method to studies on the genetic regulation of gene expression across multiple tissues and on the relation between the gut microbiome and colorectal cancer.

10.
Mol Psychiatry ; 26(9): 5229-5238, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32606377

RESUMEN

Bipolar disorder is a highly heritable illness, associated with alterations of brain structure. As such, identification of genes influencing inter-individual differences in brain morphology may help elucidate the underlying pathophysiology of bipolar disorder (BP). To identify quantitative trait loci (QTL) that contribute to phenotypic variance of brain structure, structural neuroimages were acquired from family members (n = 527) of extended pedigrees heavily loaded for bipolar disorder ascertained from genetically isolated populations in Latin America. Genome-wide linkage and association analysis were conducted on the subset of heritable brain traits that showed significant evidence of association with bipolar disorder (n = 24) to map QTL influencing regional measures of brain volume and cortical thickness. Two chromosomal regions showed significant evidence of linkage; a QTL on chromosome 1p influencing corpus callosum volume and a region on chromosome 7p linked to cortical volume. Association analysis within the two QTLs identified three SNPs correlated with the brain measures.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/genética , Encéfalo/diagnóstico por imagen , Ligamiento Genético/genética , Humanos , Linaje , Fenotipo , Sitios de Carácter Cuantitativo/genética
11.
Psychol Med ; 51(3): 494-502, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31813409

RESUMEN

BACKGROUND: Disturbed sleep and activity are prominent features of bipolar disorder type I (BP-I). However, the relationship of sleep and activity characteristics to brain structure and behavior in euthymic BP-I patients and their non-BP-I relatives is unknown. Additionally, underlying genetic relationships between these traits have not been investigated. METHODS: Relationships between sleep and activity phenotypes, assessed using actigraphy, with structural neuroimaging (brain) and cognitive and temperament (behavior) phenotypes were investigated in 558 euthymic individuals from multi-generational pedigrees including at least one member with BP-I. Genetic correlations between actigraphy-brain and actigraphy-behavior associations were assessed, and bivariate linkage analysis was conducted for trait pairs with evidence of shared genetic influences. RESULTS: More physical activity and longer awake time were significantly associated with increased brain volumes and cortical thickness, better performance on neurocognitive measures of long-term memory and executive function, and less extreme scores on measures of temperament (impulsivity, cyclothymia). These associations did not differ between BP-I patients and their non-BP-I relatives. For nine activity-brain or activity-behavior pairs there was evidence for shared genetic influence (genetic correlations); of these pairs, a suggestive bivariate quantitative trait locus on chromosome 7 for wake duration and verbal working memory was identified. CONCLUSIONS: Our findings indicate that increased physical activity and more adequate sleep are associated with increased brain size, better cognitive function and more stable temperament in BP-I patients and their non-BP-I relatives. Additionally, we found evidence for pleiotropy of several actigraphy-behavior and actigraphy-brain phenotypes, suggesting a shared genetic basis for these traits.


Asunto(s)
Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/psicología , Encéfalo/patología , Sueño , Actigrafía , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cognición , Familia , Femenino , Humanos , Patrón de Herencia/genética , Modelos Lineales , Masculino , Memoria a Corto Plazo , Persona de Mediana Edad , Linaje , Fenotipo , Temperamento , Adulto Joven
12.
Biostatistics ; 22(1): 181-197, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31301173

RESUMEN

The goal of expression quantitative trait loci (eQTL) studies is to identify the genetic variants that influence the expression levels of the genes in an organism. High throughput technology has made such studies possible: in a given tissue sample, it enables us to quantify the expression levels of approximately 20 000 genes and to record the alleles present at millions of genetic polymorphisms. While obtaining this data is relatively cheap once a specimen is at hand, obtaining human tissue remains a costly endeavor: eQTL studies continue to be based on relatively small sample sizes, with this limitation particularly serious for tissues as brain, liver, etc.-often the organs of most immediate medical relevance. Given the high-dimensional nature of these datasets and the large number of hypotheses tested, the scientific community has adopted early on multiplicity adjustment procedures. These testing procedures primarily control the false discoveries rate for the identification of genetic variants with influence on the expression levels. In contrast, a problem that has not received much attention to date is that of providing estimates of the effect sizes associated with these variants, in a way that accounts for the considerable amount of selection. Yet, given the difficulty of procuring additional samples, this challenge is of practical importance. We illustrate in this work how the recently developed conditional inference approach can be deployed to obtain confidence intervals for the eQTL effect sizes with reliable coverage. The procedure we propose is based on a randomized hierarchical strategy with a 2-fold contribution: (1) it reflects the selection steps typically adopted in state of the art investigations and (2) it introduces the use of randomness instead of data-splitting to maximize the use of available data. Analysis of the GTEx Liver dataset (v6) suggests that naively obtained confidence intervals would likely not cover the true values of effect sizes and that the number of local genetic polymorphisms influencing the expression level of genes might be underestimated.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Alelos , Intervalos de Confianza , Humanos , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Tamaño de la Muestra
13.
Nature ; 588(7839): 670-675, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33238290

RESUMEN

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Asunto(s)
COVID-19/virología , Pulmón/citología , Modelos Biológicos , Organoides/citología , Organoides/virología , SARS-CoV-2/fisiología , Técnicas de Cultivo de Tejidos , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , COVID-19/metabolismo , COVID-19/patología , Diferenciación Celular , División Celular , Células Clonales/citología , Células Clonales/metabolismo , Células Clonales/virología , Humanos , Técnicas In Vitro , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Integrina alfa6/análisis , Integrina beta4/análisis , Queratina-5/análisis , Organoides/metabolismo , Neumonía Viral/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2/crecimiento & desarrollo , Análisis de la Célula Individual , Receptor de TWEAK/análisis
14.
Proc Natl Acad Sci U S A ; 117(39): 24117-24126, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32948695

RESUMEN

We introduce a method to draw causal inferences-inferences immune to all possible confounding-from genetic data that include parents and offspring. Causal conclusions are possible with these data because the natural randomness in meiosis can be viewed as a high-dimensional randomized experiment. We make this observation actionable by developing a conditional independence test that identifies regions of the genome containing distinct causal variants. The proposed digital twin test compares an observed offspring to carefully constructed synthetic offspring from the same parents to determine statistical significance, and it can leverage any black-box multivariate model and additional nontrio genetic data to increase power. Crucially, our inferences are based only on a well-established mathematical model of recombination and make no assumptions about the relationship between the genotypes and phenotypes. We compare our method to the widely used transmission disequilibrium test and demonstrate enhanced power and localization.


Asunto(s)
Estudios de Asociación Genética , Técnicas Genéticas , Variación Genética , Herencia , Fenotipo , Humanos
15.
bioRxiv ; 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32743583

RESUMEN

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5 + basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5 + cells contained a distinct ITGA6 + ITGB4 + mitotic population whose proliferation segregated to a TNFRSF12A hi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12A hi subset of FACS-purified ITGA6 + ITGB4 + basal cells from human lung or derivative organoids. In vivo, TNFRSF12A + cells comprised ~10% of KRT5 + basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 apical-out organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.

16.
Lancet Psychiatry ; 7(5): 411-419, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32353276

RESUMEN

BACKGROUND: Severe mental illness diagnoses have overlapping symptomatology and shared genetic risk, motivating cross-diagnostic investigations of disease-relevant quantitative measures. We analysed relationships between neurocognitive performance, symptom domains, and diagnoses in a large sample of people with severe mental illness not ascertained for a specific diagnosis (cases), and people without mental illness (controls) from a single, homogeneous population. METHODS: In this case-control study, cases with severe mental illness were ascertained through electronic medical records at Clínica San Juan de Dios de Manizales (Manizales, Caldas, Colombia) and the Hospital Universitario San Vicente Fundación (Medellín, Antioquía, Colombia). Participants were assessed for speed and accuracy using the Penn Computerized Neurocognitive Battery (CNB). Cases had structured interview-based diagnoses of schizophrenia, bipolar 1, bipolar 2, or major depressive disorder. Linear mixed models, using CNB tests as repeated measures, modelled neurocognition as a function of diagnosis, sex, and all interactions. Follow-up analyses in cases included symptom factor scores obtained from exploratory factor analysis of symptom data as main effects. FINDINGS: Between Oct 1, 2017, and Nov 1, 2019, 2406 participants (1689 cases [schizophrenia n=160; bipolar 1 disorder n=519; bipolar 2 disorder n=204; and major depressive disorder n=806] and 717 controls; mean age 39 years (SD 14); and 1533 female) were assessed. Participants with bipolar 1 disorder and schizophrenia had similar impairments in accuracy and speed across cognitive domains. Participants with bipolar 2 disorder and major depressive disorder performed similarly to controls, with subtle deficits in executive and social cognition. A three-factor model (psychosis, mania, and depression) best represented symptom data. Controlling for diagnosis, premorbid IQ, and disease severity, high lifetime psychosis scores were associated with reduced accuracy and speed across cognitive domains, whereas high depression scores were associated with increased social cognition accuracy. INTERPRETATION: Cross-diagnostic investigations showed that neurocognitive function in severe mental illness is characterised by two distinct profiles (bipolar 1 disorder and schizophrenia, and bipolar 2 disorder and major depressive disorder), and is associated with specific symptom domains. These results suggest the utility of this design for elucidating severe mental illness causes and trajectories. FUNDING: US National Institute of Mental Health.


Asunto(s)
Trastorno Bipolar/psicología , Trastornos del Conocimiento/psicología , Cognición , Trastorno Depresivo Mayor/psicología , Psicología del Esquizofrénico , Adulto , Estudios de Casos y Controles , Colombia , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Nat Commun ; 11(1): 1799, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265451

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Transl Psychiatry ; 10(1): 74, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094344

RESUMEN

Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of BP. In these pedigrees, we performed microarray SNP genotyping of 838 individuals and high-coverage whole-genome sequencing of 449 individuals. We compared polygenic risk scores (PRS), estimated using the latest BP1 genome-wide association study (GWAS) summary statistics, between BP1 individuals and related controls. We also evaluated whether BP1 individuals had a higher burden of rare deleterious single-nucleotide variants (SNVs) and rare copy number variants (CNVs) in a set of genes related to BP1. We found that compared with unaffected relatives, BP1 individuals had higher PRS estimated from BP1 GWAS statistics (P = 0.001 ~ 0.007) and displayed modest increase in burdens of rare deleterious SNVs (P = 0.047) and rare CNVs (P = 0.002 ~ 0.033) in genes related to BP1. We did not observe rare variants segregating in the pedigrees. These results suggest that small-to-moderate effect rare and common variants are more likely to contribute to BP1 risk in these extended pedigrees than a few large-effect rare variants.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Linaje , Polimorfismo de Nucleótido Simple
19.
Nat Commun ; 11(1): 1093, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107378

RESUMEN

In the statistical analysis of genome-wide association data, it is challenging to precisely localize the variants that affect complex traits, due to linkage disequilibrium, and to maximize power while limiting spurious findings. Here we report on KnockoffZoom: a flexible method that localizes causal variants at multiple resolutions by testing the conditional associations of genetic segments of decreasing width, while provably controlling the false discovery rate. Our method utilizes artificial genotypes as negative controls and is equally valid for quantitative and binary phenotypes, without requiring any assumptions about their genetic architectures. Instead, we rely on well-established genetic models of linkage disequilibrium. We demonstrate that our method can detect more associations than mixed effects models and achieve fine-mapping precision, at comparable computational cost. Lastly, we apply KnockoffZoom to data from 350k subjects in the UK Biobank and report many new findings.


Asunto(s)
Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Desequilibrio de Ligamiento , Modelos Genéticos , Algoritmos , Mapeo Cromosómico/métodos , Conjuntos de Datos como Asunto , Estudios de Factibilidad , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Programas Informáticos
20.
Eur Urol Oncol ; 3(3): 360-364, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31412000

RESUMEN

To personalize treatment for renal cell carcinoma (RCC), it would be ideal to confirm the activity of druggable protein pathways within individual tumors. We have developed a high-resolution nanoimmunoassay (NIA) to measure protein activity with high precision in scant specimens (eg, fine needle aspirates [FNAs]). Here, we used NIA to determine whether protein activation varied in different regions of RCC tumors. Since most RCC therapies target angiogenesis by inhibiting the vascular endothelial growth factor (VEGF) receptor, we quantified phosphorylation of extracellular signal-regulated kinase (ERK), a downstream effector of the VEGF signaling pathway. In 90 ex vivo FNA biopsies sampled from multiple regions of 38 primary clear cell RCC tumors, ERK phosphorylation differed among patients. In contrast, within individual patients, we found limited intratumoral heterogeneity of ERK phosphorylation. Our results suggest that measuring ERK in a single FNA may be representative of ERK activity in different regions of the same tumor. As diagnostic and therapeutic protein biomarkers are being sought, NIA measurements of protein signaling may increase the clinical utility of renal mass biopsy and allow for the application of precision oncology for patients with localized and advanced RCC. PATIENT SUMMARY: In this report, we applied a new approach to measure the activity of extracellular signal-regulated kinase (ERK), a key cancer signaling protein, in different areas within kidney cancers. We found that ERK activity varied between patients, but that different regions within individual kidney tumors showed similar ERK activity. This suggests that a single biopsy of renal cell carcinoma may be sufficient to measure protein signaling activity to aid in precision oncology approaches.


Asunto(s)
Carcinoma de Células Renales/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias Renales/enzimología , Carcinoma de Células Renales/química , Carcinoma de Células Renales/patología , Quinasas MAP Reguladas por Señal Extracelular/análisis , Humanos , Neoplasias Renales/química , Neoplasias Renales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...