Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 19(1): 233, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724941

RESUMEN

BACKGROUND: Shipworms are marine xylophagus bivalve molluscs, which can live on a diet solely of wood due to their ability to produce plant cell wall-degrading enzymes. Bacterial carbohydrate-active enzymes (CAZymes), synthesised by endosymbionts living in specialised shipworm cells called bacteriocytes and located in the animal's gills, play an important role in wood digestion in shipworms. However, the main site of lignocellulose digestion within these wood-boring molluscs, which contains both endogenous lignocellulolytic enzymes and prokaryotic enzymes, is the caecum, and the mechanism by which bacterial enzymes reach the distant caecum lumen has remained so far mysterious. Here, we provide a characterisation of the path through which bacterial CAZymes produced in the gills of the shipworm Lyrodus pedicellatus reach the distant caecum to contribute to the digestion of wood. RESULTS: Through a combination of transcriptomics, proteomics, X-ray microtomography, electron microscopy studies and in vitro biochemical characterisation, we show that wood-digesting enzymes produced by symbiotic bacteria are localised not only in the gills, but also in the lumen of the food groove, a stream of mucus secreted by gill cells that carries food particles trapped by filter feeding to the mouth. Bacterial CAZymes are also present in the crystalline style and in the caecum of their shipworm host, suggesting a unique pathway by which enzymes involved in a symbiotic interaction are transported to their site of action. Finally, we characterise in vitro four new bacterial glycosyl hydrolases and a lytic polysaccharide monooxygenase identified in our transcriptomic and proteomic analyses as some of the major bacterial enzymes involved in this unusual biological system. CONCLUSION: Based on our data, we propose that bacteria and their enzymes are transported from the gills along the food groove to the shipworm's mouth and digestive tract, where they aid in wood digestion.


Asunto(s)
Bivalvos , Proteómica , Animales , Bacterias , Filogenia , Simbiosis
2.
Biomolecules ; 11(8)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34439846

RESUMEN

The oomycete pathogen Aphanomyces astaci, also known as "crayfish plague", is an obligate fungal-like parasite of freshwater crustaceans and is considered responsible for the ongoing decline of native European crayfish populations. A. astaci is thought to secrete a wide array of effectors and enzymes that facilitate infection, however their molecular mechanisms have been poorly characterized. Here, we report the identification of AA15 lytic polysaccharide monooxygenases (LPMOs) as a new group of secreted virulence factors in A. astaci. We show that this enzyme family has greatly expanded in A. astaci compared to all other oomycetes, and that it may facilitate infection through oxidative degradation of crystalline chitin, the most abundant polysaccharide found in the crustacean exoskeleton. These findings reveal new roles for LPMOs in animal-pathogen interactions, and could help inform future strategies for the protection of farmed and endangered species.


Asunto(s)
Enfermedades de los Animales/microbiología , Aphanomyces , Astacoidea/microbiología , Infecciones , Oxigenasas de Función Mixta/metabolismo , Factores de Virulencia/metabolismo , Animales , Aphanomyces/enzimología , Aphanomyces/patogenicidad , Quitina/metabolismo , Infecciones/microbiología , Infecciones/veterinaria
3.
Science ; 373(6556): 774-779, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385392

RESUMEN

The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Pectinas/metabolismo , Phytophthora infestans/enzimología , Enfermedades de las Plantas/parasitología , Solanum lycopersicum/parasitología , Solanum tuberosum/parasitología , Cobre , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Oxidación-Reducción , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Hojas de la Planta/parasitología , Polisacáridos/metabolismo , Conformación Proteica , Dominios Proteicos , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Appl Microbiol Biotechnol ; 104(22): 9631-9643, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32965563

RESUMEN

Woody biomass represents an important source of carbon on earth, and its global recycling is highly dependent on Agaricomycetes fungi. White-rot Basidiomycetes are a very important group in this regard, as they possess a large and diverse enzymatic repertoire for biomass decomposition. Among these enzymes, the recently discovered lytic polysaccharide monooxygenases (LPMOs) have revolutionized biomass processing with their novel oxidative mechanism of action. The strikingly high representation of LPMOs in fungal genomes raises the question of their functional versatility. In this work, we studied an AA9 LPMO from the white-rot basidiomycete Pycnoporus sanguineus, PsAA9A. Successfully produced as a recombinant secreted protein in Pichia pastoris, PsAA9A was found to be a C1-specific LPMO active on cellulosic substrates, generating native and oxidized cello-oligosaccharides in the presence of an external electron donor. PsAA9A boosted cellulolytic activity of glysoside hydrolases from families GH1, GH5, and GH6.This study serves as a starting point towards understanding the functional versatility and biotechnological potential of this enzymatic family, highly represented in wood decay fungi, in Pycnoporus genus. KEY POINTS: • PsAA9A is the first AA9 from P. sanguineus to be characterized. • PsAA9A has activity on cellulose, producing C1-oxidized cello-oligosaccharides. • Boosting activity with GH1, GH5, and GH6 was proven.


Asunto(s)
Proteínas Fúngicas , Oxigenasas de Función Mixta , Proteínas Fúngicas/genética , Humanos , Oxigenasas de Función Mixta/genética , Polyporaceae , Polisacáridos , Saccharomycetales
5.
Biotechnol Biofuels ; 12: 232, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31583018

RESUMEN

BACKGROUND: The quest for novel enzymes for cellulosic biomass-degradation has recently been focussed on lytic polysaccharide monooxygenases (LPMOs/PMOs), Cu-containing proteins that catalyse the oxidative degradation of otherwise recalcitrant polysaccharides using O2 or H2O2 as a co-substrate. RESULTS: Although classical saprotrophic fungi and bacteria have been a rich source of lytic polysaccharide monooxygenases (LPMOs), we were interested to see if LPMOs from less evident bio-environments could be discovered and assessed for their cellulolytic activity in a biofuel context. In this regard, the marine shipworm Lyrodus pedicellatus represents an interesting source of new enzymes, since it must digest wood particles ingested during its natural tunnel boring behaviour and plays host to a symbiotic bacterium, Teredinibacter turnerae, the genome of which has revealed a multitude of enzymes dedicated to biomass deconstruction. Here, we show that T. turnerae encodes a cellulose-active AA10 LPMO. The 3D structure, at 1.4 Å resolution, along with its EPR spectrum is distinct from other AA10 polysaccharide monooxygenases insofar as it displays a "histidine-brace" catalytic apparatus with changes to the surrounding coordination sphere of the copper. Furthermore, TtAA10A possesses a second, surface accessible, Cu site 14 Å from the classical catalytic centre. Activity measurements show that the LPMO oxidises cellulose and thereby significantly augments the rate of degradation of cellulosic biomass by classical glycoside hydrolases. CONCLUSION: Shipworms are wood-boring marine molluscs that can live on a diet of lignocellulose. Bacterial symbionts of shipworms provide many of the enzymes needed for wood digestion. The shipworm symbiont T. turnerae produces one of the few LPMOs yet described from the marine environment, notably adding to the capability of shipworms to digest recalcitrant polysaccharides.

6.
Nat Commun ; 9(1): 5125, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510200

RESUMEN

Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in polysaccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean woodborers of the genus Limnoria are among the few animals that can survive on a diet of this recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also glucomannans), corresponding with the abundance of cellulases in their digestive system, but xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein, hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on wood in the absence of gut symbionts. These findings may hold potential for innovations in lignocellulose biorefining.


Asunto(s)
Tracto Gastrointestinal/fisiología , Hemocianinas/metabolismo , Isópodos/fisiología , Lignina/metabolismo , Madera/parasitología , Animales , Celulosa/metabolismo , Dieta , Digestión/fisiología , Heces/química , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/ultraestructura , Isópodos/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Xilanos/metabolismo
7.
Plant J ; 94(4): 709-720, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29575327

RESUMEN

Herbicide resistance in grass weeds is now one of the greatest threats to sustainable cereal production in Northern Europe. Multiple-herbicide resistance (MHR), a poorly understood multigenic and quantitative trait, is particularly problematic as it provides tolerance to most classes of chemistries currently used for post-emergence weed control. Using a combination of transcriptomics and proteomics, the evolution of MHR in populations of the weed blackgrass (Alopecurus myosuroides) has been investigated. While over 4500 genes showed perturbation in their expression in MHR versus herbicide sensitive (HS) plants, only a small group of proteins showed >2-fold changes in abundance, with a mere eight proteins consistently associated with this class of resistance. Of the eight, orthologues of three of these proteins are also known to be associated with multiple drug resistance (MDR) in humans, suggesting a cross-phyla conservation in evolved tolerance to chemical agents. Proteomics revealed that MHR could be classified into three sub-types based on the association with resistance to herbicides with differing modes of action (MoA), being either global, specific to diverse chemistries acting on one MoA, or herbicide specific. Furthermore, the proteome of MHR plants were distinct from that of HS plants exposed to a range of biotic (insect feeding, plant-microbe interaction) and abiotic (N-limitation, osmotic, heat, herbicide safening) challenges commonly encountered in the field. It was concluded that MHR in blackgrass is a uniquely evolving trait(s), associated with changes in the proteome that are distinct from responses to conventional plant stresses, but sharing common features with MDR in humans.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas/farmacología , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Proteoma , Resistencia a Múltiples Medicamentos , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Malezas , Poaceae/efectos de los fármacos , Poaceae/genética , Proteómica , Estrés Fisiológico
8.
Biotechnol Biofuels ; 11: 59, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527236

RESUMEN

Lignocellulose forms the structural framework of woody plant biomass and represents the most abundant carbon source in the biosphere. Turnover of woody biomass is a critical component of the global carbon cycle, and the enzymes involved are of increasing industrial importance as industry moves away from fossil fuels to renewable carbon resources. Shipworms are marine bivalve molluscs that digest wood and play a key role in global carbon cycling by processing plant biomass in the oceans. Previous studies suggest that wood digestion in shipworms is dominated by enzymes produced by endosymbiotic bacteria found in the animal's gills, while little is known about the identity and function of endogenous enzymes produced by shipworms. Using a combination of meta-transcriptomic, proteomic, imaging and biochemical analyses, we reveal a complex digestive system dominated by uncharacterized enzymes that are secreted by a specialized digestive gland and that accumulate in the cecum, where wood digestion occurs. Using a combination of transcriptomics, proteomics, and microscopy, we show that the digestive proteome of the shipworm Lyrodus pedicellatus is mostly composed of enzymes produced by the animal itself, with a small but significant contribution from symbiotic bacteria. The digestive proteome is dominated by a novel 300 kDa multi-domain glycoside hydrolase that functions in the hydrolysis of ß-1,4-glucans, the most abundant polymers in wood. These studies allow an unprecedented level of insight into an unusual and ecologically important process for wood recycling in the marine environment, and open up new biotechnological opportunities in the mobilization of sugars from lignocellulosic biomass.

9.
Nat Commun ; 9(1): 756, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472725

RESUMEN

Thermobia domestica belongs to an ancient group of insects and has a remarkable ability to digest crystalline cellulose without microbial assistance. By investigating the digestive proteome of Thermobia, we have identified over 20 members of an uncharacterized family of lytic polysaccharide monooxygenases (LPMOs). We show that this LPMO family spans across several clades of the Tree of Life, is of ancient origin, and was recruited by early arthropods with possible roles in remodeling endogenous chitin scaffolds during development and metamorphosis. Based on our in-depth characterization of Thermobia's LPMOs, we propose that diversification of these enzymes toward cellulose digestion might have endowed ancestral insects with an effective biochemical apparatus for biomass degradation, allowing the early colonization of land during the Paleozoic Era. The vital role of LPMOs in modern agricultural pests and disease vectors offers new opportunities to help tackle global challenges in food security and the control of infectious diseases.


Asunto(s)
Artrópodos/enzimología , Proteínas de Insectos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Animales , Artrópodos/genética , Artrópodos/crecimiento & desarrollo , Biodegradación Ambiental , Biomasa , Celulosa/metabolismo , Quitina/metabolismo , Evolución Molecular , Genes de Insecto , Proteínas de Insectos/química , Proteínas de Insectos/genética , Insectos/enzimología , Insectos/genética , Insectos/crecimiento & desarrollo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Filogenia , Proteómica
10.
Sci Rep ; 7: 41987, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165016

RESUMEN

Herbicide resistance in wild grasses is widespread in the UK, with non-target site resistance (NTSR) to multiple chemistries being particularly problematic in weed control. As a complex trait, NTSR is driven by complex evolutionary pressures and the growing awareness of the role of the phytobiome in plant abiotic stress tolerance, led us to sequence the transcriptomes of herbicide resistant and susceptible populations of black-grass and annual rye-grass for the presence of endophytes. Black-grass (Alopecurus myosuroides; Am) populations, displaying no overt disease symptoms, contained three previously undescribed viruses belonging to the Partititiviridae (AMPV1 and AMPV2) and Rhabdoviridae (AMVV1) families. These infections were widespread in UK black-grass populations and evidence was obtained for similar viruses being present in annual rye grass (Lolium rigidum), perennial rye-grass (Lolium perenne) and meadow fescue (Festuca pratensis). In black-grass, while no direct causative link was established linking viral infection to herbicide resistance, transcriptome sequencing showed a high incidence of infection in the NTSR Peldon population. The widespread infection of these weeds by little characterised and persistent viruses and their potential evolutionary role in enhancing plant stress tolerance mechanisms including NTSR warrants further investigation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Resistencia a los Herbicidas/genética , Proteínas de Plantas/genética , Poaceae/virología , Transcriptoma , Virus/clasificación , Perfilación de la Expresión Génica , Herbicidas/farmacología , Fenotipo , Poaceae/genética , Poaceae/crecimiento & desarrollo , Virus/genética
11.
Methods Mol Biol ; 987: 239-49, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23475682

RESUMEN

Cytochromes P450 (P450s) are a family of heme-containing oxidases with considerable potential as tools for industrial biocatalysis. Organismal genomes are revealing thousands of gene sequences that encode P450s of as yet unknown function, the exploitation of which will require high-throughput tools for their isolation and characterization. Here, we describe a new ligation-independent cloning vector (LICRED) that enables the high-throughput generation of libraries of redox-self-sufficient P450s, by fusing a range of P450 heme domains to the reductase of P450RhF (RhF-Red) in a robust and generically applicable way.


Asunto(s)
Clonación Molecular/métodos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Vectores Genéticos/genética , Biotransformación , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Biblioteca de Genes , Nocardia/enzimología , Nocardia/genética , Oxidación-Reducción , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 110(15): 5812-7, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530204

RESUMEN

Multiple-herbicide resistance (MHR) in black-grass (Alopecurus myosuroides) and annual rye-grass (Lolium rigidum) is a global problem leading to a loss of chemical weed control in cereal crops. Although poorly understood, in common with multiple-drug resistance (MDR) in tumors, MHR is associated with an enhanced ability to detoxify xenobiotics. In humans, MDR is linked to the overexpression of a pi class glutathione transferase (GSTP1), which has both detoxification and signaling functions in promoting drug resistance. In both annual rye-grass and black-grass, MHR was also associated with the increased expression of an evolutionarily distinct plant phi (F) GSTF1 that had a restricted ability to detoxify herbicides. When the black-grass A. myosuroides (Am) AmGSTF1 was expressed in Arabidopsis thaliana, the transgenic plants acquired resistance to multiple herbicides and showed similar changes in their secondary, xenobiotic, and antioxidant metabolism to those determined in MHR weeds. Transcriptome array experiments showed that these changes in biochemistry were not due to changes in gene expression. Rather, AmGSTF1 exerted a direct regulatory control on metabolism that led to an accumulation of protective flavonoids. Further evidence for a key role for this protein in MHR was obtained by showing that the GSTP1- and MDR-inhibiting pharmacophore 4-chloro-7-nitro-benzoxadiazole was also active toward AmGSTF1 and helped restore herbicide control in MHR black-grass. These studies demonstrate a central role for specific GSTFs in MHR in weeds that has parallels with similar roles for unrelated GSTs in MDR in humans and shows their potential as targets for chemical intervention in resistant weed management.


Asunto(s)
Glutatión Transferasa/fisiología , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Malezas/enzimología , Poaceae/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glutatión Transferasa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Malezas/genética , Plantas Modificadas Genéticamente , Poaceae/genética , Transgenes
13.
Environ Sci Technol ; 46(13): 7245-51, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22694209

RESUMEN

Anaerobic transformation of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by microorganisms involves sequential reduction of N-NO(2) to the corresponding N-NO groups resulting in the initial formation of MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine). MNX is further reduced to the dinitroso (DNX) and trinitroso (TNX) derivatives. In this paper, we describe the degradation of MNX and TNX by the unusual cytochrome P450 XplA that mediates metabolism of RDX in Rhodococcus rhodochrous strain 11Y. XplA is known to degrade RDX under aerobic and anaerobic conditions, and, in the present study, was found able to degrade MNX to give similar products distribution including NO(2)(-), NO(3)(-), N(2)O, and HCHO but with varying stoichiometric ratio, that is, 2.06, 0.33, 0.33, 1.18, and 1.52, 0.15, 1.04, 2.06, respectively. In addition, the ring cleavage product 4-nitro-2,4,-diazabutanal (NDAB) and a trace amount of another intermediate with a [M-H](-) at 102 Da, identified as ONNHCH(2)NHCHO (NO-NDAB), were detected mostly under aerobic conditions. Interestingly, degradation of TNX was observed only under anaerobic conditions in the presence of RDX and/or MNX. When we incubated RDX and its nitroso derivatives with XplA, we found that successive replacement of N-NO(2) by N-NO slowed the removal rate of the chemicals with degradation rates in the order RDX > MNX > DNX, suggesting that denitration was mainly responsible for initiating cyclic nitroamines degradation by XplA. This study revealed that XplA preferentially cleaved the N-NO(2) over the N-NO linkages, but could nevertheless degrade all three nitroso derivatives, demonstrating the potential for complete RDX removal in explosives-contaminated sites.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Sustancias Explosivas/metabolismo , Nitrosaminas/metabolismo , Rhodococcus/enzimología , Triazinas/metabolismo , Biodegradación Ambiental , Sustancias Explosivas/aislamiento & purificación , Nitrosaminas/aislamiento & purificación , Triazinas/aislamiento & purificación
14.
Biochim Biophys Acta ; 1814(1): 230-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20624490

RESUMEN

XplA is a cytochrome P450 that mediates the microbial metabolism of the military explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). It has an unusual structural organisation comprising a heme domain that is fused to its flavodoxin redox partner. XplA along with its partnering reductase XplB are plasmid encoded and the gene xplA has now been found in divergent genera across the globe with near sequence identity. Importantly, it has only been detected at explosives contaminated sites suggesting rapid dissemination of this novel catabolic activity, possibly within the 50-year period since the introduction of RDX into the environment. The X-ray structure of XplA-heme has been solved, providing fundamental information on the heme binding site. Interestingly, oxygen is not required for the degradation of RDX, but its presence determines the final degradation products, demonstrating that the degradation chemistry is flexible with both anaerobic and aerobic pathways resulting in the release of nitrite from the substrate. Transgenic plants expressing xplA are able to remove saturating levels of RDX from soil leachate and may provide a low cost sustainable remediation strategy for contaminated military sites.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Rhodococcus/metabolismo , Triazinas/metabolismo , Proteínas Bacterianas/química , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450/química , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Estructura Molecular , Estructura Terciaria de Proteína , Rhodococcus/enzimología , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Triazinas/química
15.
Chembiochem ; 11(7): 987-94, 2010 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-20425752

RESUMEN

Cytochromes P450 (P450s) are a family of haem-containing oxidases with considerable potential as tools for industrial biocatalysis. Organismal genomes are revealing thousands of gene sequences that encode P450s of as yet unknown function, the exploitation of which will require high-throughput tools for their isolation and characterisation. In this report, a ligationindependent cloning vector "LICRED" is described that enables the high-throughput generation of libraries of redox-self-sufficient P450s by fusing a range of P450 haem domains to the reductase of P450RhF (RhF-Red) in a robust and generically applicable way. Cloning and expression of fusions of RhF-Red with the haem domains of P450cam and P450-XplA resulted in soluble, active, redox-self-sufficient, chimeric enzymes. In vitro studies also revealed that electron transfer from NADPH to haem was primarily intramolecular. The general applicability of the LICRED platform was then demonstrated through the creation of a library of RhF-Red fusion constructs by using the diverse complement of P450 haem domains identified in the genome of Nocardia farcinica. The resultant fusion-protein library was then screened against a panel of substrates; this revealed chimeric enzymes competent for the hydroxylation of testosterone and methyltestosterone, and the dealkylation of 7-ethoxycoumarin.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Transporte de Electrón , Enzimas , Vectores Genéticos , Hemo/química , Cinética , NADP/química , Oxidación-Reducción , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
16.
J Biol Chem ; 284(41): 28467-28475, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19692330

RESUMEN

XplA is a cytochrome P450 of unique structural organization, consisting of a heme-domain that is C-terminally fused to its native flavodoxin redox partner. XplA, along with flavodoxin reductase XplB, has been shown to catalyze the breakdown of the nitramine explosive and pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine (royal demolition explosive) by reductive denitration. The structure of the heme domain of XplA (XplA-heme) has been solved in two crystal forms: as a dimer in space group P2(1) to a resolution of 1.9 A and as a monomer in space group P2(1)2(1)2 to a resolution of 1.5 A, with the ligand imidazole bound at the heme iron. Although it shares the overall fold of cytochromes P450 of known structure, XplA-heme is unusual in that the kinked I-helix that traverses the distal face of the heme is broken by Met-394 and Ala-395 in place of the well conserved Asp/Glu plus Thr/Ser, important in oxidative P450s for the scission of the dioxygen bond prior to substrate oxygenation. The heme environment of XplA-heme is hydrophobic, featuring a cluster of three methionines above the heme, including Met-394. Imidazole was observed bound to the heme iron and is in close proximity to the side chain of Gln-438, which is situated over the distal face of the heme. Imidazole is also hydrogen-bonded to a water molecule that sits in place of the threonine side-chain hydroxyl exemplified by Thr-252 in Cyt-P450cam. Both Gln-438 --> Ala and Ala-395 --> Thr mutants of XplA-heme displayed markedly reduced activity compared with the wild type for royal demolition explosive degradation when combined with surrogate electron donors.


Asunto(s)
Biotransformación , Sistema Enzimático del Citocromo P-450/química , Sustancias Explosivas/metabolismo , Hemo/química , Isoenzimas/química , Estructura Terciaria de Proteína , Triazinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sustancias Explosivas/química , Hemo/genética , Hemo/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Oxidación-Reducción , Alineación de Secuencia , Triazinas/química
17.
Chem Commun (Camb) ; (18): 2478-80, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19532862

RESUMEN

A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.


Asunto(s)
Alcanfor 5-Monooxigenasa/química , Alcanfor 5-Monooxigenasa/genética , Oxidorreductasas/química , Oxidorreductasas/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Estructura Terciaria de Proteína , Rhodococcus/enzimología , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...