Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 51: 80-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26853935

RESUMEN

Xenopus laevis offers unprecedented access to the intricacies of muscle development. The large, robust embryos make it ideal for manipulations at both the tissue and molecular level. In particular, this model system can be used to fate map early muscle progenitors, visualize cell behaviors associated with somitogenesis, and examine the role of signaling pathways that underlie induction, specification, and differentiation of muscle. Several characteristics that are unique to X. laevis include myogenic waves with distinct gene expression profiles and the late formation of dermomyotome and sclerotome. Furthermore, myogenesis in the metamorphosing frog is biphasic, facilitating regeneration studies. In this review, we describe the morphogenetic movements that shape the somites and discuss signaling and transcriptional regulation during muscle development and regeneration. With recent advances in gene editing tools, X. laevis remains a premier model organism for dissecting the complex mechanisms underlying the specification, cell behaviors, and formation of the musculature system.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/embriología , Xenopus laevis/embriología , Animales , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Humanos , Músculo Esquelético/citología , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Regeneración , Somitos/citología , Somitos/embriología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/crecimiento & desarrollo
2.
Dev Dyn ; 243(4): 509-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24357195

RESUMEN

BACKGROUND: Stromal derived factor-1α (sdf-1α), a chemoattractant chemokine, plays a major role in tumor growth, angiogenesis, metastasis, and in embryogenesis. The sdf-1α signaling pathway has also been shown to be important for somite rotation in zebrafish (Hollway et al., 2007). Given the known similarities and differences between zebrafish and Xenopus laevis somitogenesis, we sought to determine whether the role of sdf-1α is conserved in Xenopus laevis. RESULTS: Using a morpholino approach, we demonstrate that knockdown of sdf-1α or its receptor, cxcr4, leads to a significant disruption in somite rotation and myotome alignment. We further show that depletion of sdf-1α or cxcr4 leads to the near absence of ß-dystroglycan and laminin expression at the intersomitic boundaries. Finally, knockdown of sdf-1α decreases the level of activated RhoA, a small GTPase known to regulate cell shape and movement. CONCLUSION: Our results show that sdf-1α signaling regulates somite cell migration, rotation, and myotome alignment by directly or indirectly regulating dystroglycan expression and RhoA activation. These findings support the conservation of sdf-1α signaling in vertebrate somite morphogenesis; however, the precise mechanism by which this signaling pathway influences somite morphogenesis is different between the fish and the frog.


Asunto(s)
Quimiocina CXCL12/metabolismo , Embrión no Mamífero/embriología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Somitos/embriología , Proteínas de Xenopus/metabolismo , Animales , Quimiocina CXCL12/genética , Morfogénesis/efectos de los fármacos , Morfolinos/farmacología , Transducción de Señal/efectos de los fármacos , Xenopus laevis , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
3.
Dev Dyn ; 239(4): 1162-77, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20235228

RESUMEN

Somites give rise to the vertebral column and segmented musculature of adult vertebrates. The cell movements that position cells within somites along the anteroposterior and dorsoventral axes are not well understood. Using a fate mapping approach, we show that at the onset of Xenopus laevis gastrulation, mesoderm cells undergo distinct cell movements to form myotome fibers positioned in discrete locations within somites and along the anteroposterior axis. We show that the distribution of presomitic cells along the anteroposterior axis is influenced by convergent and extension movements of the notochord. Heterochronic and heterotopic transplantations between presomitic gastrula and early tail bud stages show that these cells are interchangeable and can form myotome fibers in locations determined by the host embryo. However, additional transplantation experiments revealed differences in the competency of presomitic cells to form myotome fibers, suggesting that maturation within the tail bud presomitic mesoderm is required for myotome fiber differentiation.


Asunto(s)
Tipificación del Cuerpo , Fibras Musculares Esqueléticas/fisiología , Xenopus laevis/embriología , Animales , Movimiento Celular , Trasplante de Células/fisiología , Quimera/embriología , Quimera/crecimiento & desarrollo , Embrión no Mamífero , Femenino , Gástrula/citología , Gástrula/embriología , Gástrula/fisiología , Gástrula/trasplante , Masculino , Modelos Biológicos , Desarrollo de Músculos/fisiología , Notocorda/embriología , Notocorda/fisiología , Somitos/embriología , Somitos/fisiología , Somitos/trasplante , Factores de Tiempo , Xenopus laevis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA