Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Auton Res ; 33(6): 705-714, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776374

RESUMEN

PURPOSE: Our aim was to test the hypothesis that patients with chronic kidney disease (CKD) would exhibit augmented resting beat-to-beat blood pressure variability (BPV) that is associated with poor clinical outcomes independent of mean blood pressure (BP). In addition, since the arterial baroreflex plays a critical role in beat-to-beat BP regulation, we further hypothesized that an impaired baroreflex control would be associated with an augmented resting beat-to-beat BPV. METHODS: In 25 sedentary patients with CKD stages III-IV (62 ± 9 years) and 20 controls (57 ± 10 years), resting beat-to-beat BP (finger photoplethysmography) and heart rate (electrocardiography) were continuously measured for 10 min. We calculated the standard deviation (SD), average real variability (ARV) and other indices of BPV. The sequence technique was used to estimate spontaneous cardiac baroreflex sensitivity. RESULTS: Compared with controls (CON), the CKD group had significantly increased resting BPV. The ARV (2.2 ± 0.6 versus 1.6 ± 0.5 mmHg, P < 0.001; 1.6 ± 0.7 versus 1.3 ± 0.3 mmHg, P = 0.039; 1.4 ± 0.5 versus 1.0 ± 0.2 mmHg, P < 0.001) of systolic, diastolic and mean BP, respectively, was increased in CKD versus controls. Other traditional measures of variability showed similar results. The cardiac baroreflex sensitivity was lower in CKD compared with controls (CKD: 8.4 ± 4.5 ms/mmHg versus CON: 14.0 ± 8.2 ms/mmHg, P = 0.008). In addition, cardiac baroreflex sensitivity was negatively associated with BPV [systolic blood pressure (SBP) ARV; r = -0.44, P = 0.003]. CONCLUSION: In summary, our data demonstrate that patients with CKD have augmented beat-to-beat BPV and lower cardiac baroreflex sensitivity. BPV and cardiac baroreflex sensitivity were negatively correlated in this cohort. These findings may further our understanding about cardiovascular dysregulation observed in patients with CKD.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Sistema Cardiovascular , Hipertensión , Insuficiencia Renal Crónica , Humanos , Presión Sanguínea/fisiología , Corazón , Frecuencia Cardíaca/fisiología , Barorreflejo/fisiología
2.
Am J Physiol Heart Circ Physiol ; 324(6): H843-H855, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37000610

RESUMEN

Chronic kidney disease (CKD) is characterized by pronounced exercise intolerance and exaggerated blood pressure reactivity during exercise. Classic mechanisms of exercise intolerance in CKD have been extensively described previously and include uremic myopathy, chronic inflammation, malnutrition, and anemia. We contend that these classic mechanisms only partially explain the exercise intolerance experienced in CKD and that alterations in cardiovascular and autonomic regulation also play a key contributing role. The purpose of this review is to examine the physiological factors that contribute to neurocirculatory dysregulation during exercise and discuss the adaptations that result from regular exercise training in CKD. Key neurocirculatory mechanisms contributing to exercise intolerance in CKD include augmentation of the exercise pressor reflex, aberrations in neurocirculatory control, and increased neurovascular transduction. In addition, we highlight how some contributing factors may be improved through exercise training, with a specific focus on the sympathetic nervous system. Important areas for future work include understanding how the exercise prescription may best be optimized in CKD and how the beneficial effects of exercise training may extend to the brain.


Asunto(s)
Sistema Cardiovascular , Insuficiencia Renal Crónica , Humanos , Músculo Esquelético , Insuficiencia Renal Crónica/terapia , Ejercicio Físico/fisiología , Presión Sanguínea , Sistema Nervioso Simpático
3.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R501-R510, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35348021

RESUMEN

Resting beat-to-beat blood pressure variability is a powerful predictor of cardiovascular events and end-organ damage. However, its underlying mechanisms remain unknown. Herein, we tested the hypothesis that a potentiation of GABAergic synaptic transmission by diazepam would acutely increase resting beat-to-beat blood pressure variability. In 40 (17 females) young, normotensive subjects, resting beat-to-beat blood pressure (finger photoplethysmography) was continuously measured for 5-10 min, 60 min after the oral administration of either diazepam (10 mg) or placebo. The experiments were conducted in a randomized, double-blinded, and placebo-controlled design. Stroke volume was estimated from the blood pressure waveform (ModelFlow) permitting the calculation of cardiac output and total peripheral resistance. Direct recordings of muscle sympathetic nerve activity (MSNA, microneurography) were obtained in a subset of subjects (n = 13), and spontaneous cardiac and sympathetic baroreflex sensitivity were calculated. Compared with placebo, diazepam significantly increased the standard deviation of systolic blood pressure (4.7 ± 1.4 vs. 5.7 ± 1.5 mmHg, P = 0.001), diastolic blood pressure (3.8 ± 1.2 vs. 4.5 ± 1.2 mmHg, P = 0.007), and mean blood pressure (3.8 ± 1.1 vs. 4.5 ± 1.1 mmHg, P = 0.002), as well as cardiac output (469 ± 149 vs. 626 ± 259 mL/min, P < 0.001) and total peripheral resistance (1.0 ± 0.3 vs. 1.4 ± 0.6 mmHg/L/min, P < 0.001). Similar results were found using different indices of variability. Furthermore, diazepam reduced MSNA (placebo: 22 ± 6 vs. diazepam: 18 ± 8 bursts/min, P = 0.025) without affecting the arterial baroreflex control of heart rate (placebo: 18.6 ± 6.7 vs. diazepam: 18.8 ± 7.0 ms/mmHg, P = 0.87) and MSNA (placebo: -3.6 ± 1.2 vs. diazepam: -3.4 ± 1.5 bursts/100 Hb/mmHg, P = 0.55). Importantly, these findings were not impacted by biological sex. We conclude that GABAA receptors modulate resting beat-to-beat blood pressure variability in young adults.


Asunto(s)
Barorreflejo , Diazepam , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Diazepam/farmacología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Músculo Esquelético/fisiología , Receptores de GABA-A , Sistema Nervioso Simpático/fisiología , Transmisión Sináptica , Adulto Joven
5.
Front Physiol ; 12: 626640, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815139

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder classically characterized by symptoms of motor impairment (e.g., tremor and rigidity), but also presenting with important non-motor impairments. There is evidence for the reduced activity of both the parasympathetic and sympathetic limbs of the autonomic nervous system at rest in PD. Moreover, inappropriate autonomic adjustments accompany exercise, which can lead to inadequate hemodynamic responses, the failure to match the metabolic demands of working skeletal muscle and exercise intolerance. The underlying mechanisms remain unclear, but relevant alterations in several discrete central regions (e.g., dorsal motor nucleus of the vagus nerve, intermediolateral cell column) have been identified. Herein, we critically evaluate the clinically significant and complex associations between the autonomic dysfunction, fatigue and exercise capacity in PD.

6.
J Neurophysiol ; 125(4): 1425-1439, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625931

RESUMEN

The incidence of Parkinson's disease (PD) is increasing worldwide. Although the PD hallmark is the motor impairments, nonmotor dysfunctions are now becoming more recognized. Recently, studies have suggested that baroreflex dysfunction is one of the underlying mechanisms of cardiovascular dysregulation observed in patients with PD. However, the large body of literature on baroreflex function in PD is unclear. The baroreflex system plays a major role in the autonomic, and ultimately blood pressure and heart rate, adjustments that accompany acute cardiovascular stressors on a daily basis. Therefore, impaired baroreflex function (i.e., decreased sensitivity or gain) can lead to altered neural cardiovascular responses. Since PD affects parasympathetic and sympathetic branches of the autonomic nervous system and both are orchestrated by the baroreflex system, understanding of this crucial mechanism in PD is necessary. In the present review, we summarize the potential altered central and peripheral mechanisms affecting the feedback-controlled loops that comprise the reflex arc in patients with PD. Major factors including arterial stiffness, reduced number of C1 and activation of non-C1 neurons, presence of central α-synuclein aggregation, cardiac sympathetic denervation, attenuated muscle sympathetic nerve activity, and lower norepinephrine release could compromise baroreflex function in PD. Results from patients with PD and from animal models of PD provide the reader with a clearer picture of baroreflex function in this clinical condition. By doing so, our intent is to stimulate future studies to evaluate several unanswered questions in this research area.


Asunto(s)
Barorreflejo/fisiología , Presión Sanguínea/fisiología , Bulbo Raquídeo/fisiopatología , Enfermedad de Parkinson/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Animales , Humanos , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/patología
7.
J Neurophysiol ; 124(4): 1144-1151, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877297

RESUMEN

Nonmotor symptoms are common in Parkinson's disease (PD) and they include dysregulation of cardiovascular system, which adversely affects quality of life. Recent studies provide indirect evidence that baroreflex dysfunction may be one of the mechanisms of cardiovascular dysregulation in PD. Herein, we tested the hypothesis that the baroreflex gain, assessed across an extensive range of the reflex arc by eliciting rapid changes in blood pressure (BP) induced by sequential boluses of vasoactive drugs (modified-Oxford technique) would be attenuated in middle-aged patients with PD. Beat-to-beat heart rate (electrocardiography) and BP (finger photoplethysmography) were obtained during 10 min of supine rest preceding the modified-Oxford (bolus of nitroprusside followed by phenylephrine 1 min afterward) in 11 patients with PD (51 ± 6 yr) and 7 age-matched controls (47 ± 6 yr). The resulting systolic BP and R-R interval responses were plotted and fitted with segmental linear regression and symmetric sigmoid model. Spontaneous indices obtained via sequence technique were also used to estimate baroreflex gain. Compared with controls, the estimated gains measured by segmental linear regression (patients: 3.83 ± 2.6 ms/mmHg versus controls: 7.78 ± 1.7 ms/mmHg; P = 0.003) and symmetric sigmoid model (patients: 12.36 ± 6.9 ms/mmHg versus controls: 32.02 ± 19.0 ms/mmHg; P = 0.009) were lower in patients with PD. The operating range of BP was larger in patients with PD compared with controls (13 ± 7 mmHg versus controls: 7 ± 3 mmHg; P = 0.032). Of note, the gain obtained from spontaneous indices was similar between groups. These data indicate that baroreflex gain was reduced by >50% in PD, thereby providing clear and direct evidence that cardiovagal baroreflex dysfunction occurs in PD.NEW & NOTEWORTHY Attenuated baroreflex gain may contribute to adverse cardiovascular outcomes, including orthostatic intolerance symptoms typically observed in patients with Parkinson's disease. We found that the baroreflex gain (assessed by the modified-Oxford technique) is attenuated and accompanied by an increased operating range in patients with Parkinson's disease. These findings highlight that cardiovascular perturbations are required to detect baroreflex impairments and that spontaneous indices do not reveal cardiovagal-baroreflex dysfunction in a middle-aged group of patients with Parkinson's disease.


Asunto(s)
Barorreflejo , Enfermedad de Parkinson/fisiopatología , Presión Sanguínea/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nitroprusiato/farmacología , Fenilefrina/farmacología , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
8.
Auton Neurosci ; 228: 102714, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32829151

RESUMEN

A parasympathetic reactivation is an underlying mechanism mediating the rapid fall in heart rate (HR) at the onset of post-exercise ischemia (PEI) in humans. Herein, we tested the hypothesis that, compared to men, women present a slower HR recovery at the cessation of isometric handgrip exercise (i.e., onset of PEI) due to an attenuated cardiac vagal reactivation. Forty-seven (23 women) young and healthy volunteers were recruited. Subjects performed 90s of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 3-min of PEI. The onset of PEI was analyzed over the first 30s in 10s windows. Cardiac vagal reactivation was indexed using the HR fall and by HR variability metrics (e.g., RMSSD and SDNN) immediately after the cessation of the exercise. HR was significantly increased from rest during exercise in men and women and increases were similar between sexes. However, following the cessation of exercise, the HR recovery was significantly slower in women compared to men regardless of the time point (women vs. men: ∆-14 ± 8 vs. ∆-18 ± 6 beats.min-1 at 10s; ∆-20 ± 9 vs. ∆-25 ± 8 beats.min-1 at 20s; ∆-22 ± 10 vs. ∆-27 ± 9 beats.min-1 at 30s; P = .027). RMSSD and SDNN increased at the cessation of exercise in greater magnitude in men compared to women. These findings demonstrate that women had a slower HR recovery at the cessation of isometric handgrip exercise and onset of PEI compared to men, suggesting a sex-related difference in cardiac vagal reactivation in healthy young humans.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Ejercicio Físico/fisiología , Mano/fisiología , Frecuencia Cardíaca/fisiología , Músculo Esquelético/fisiología , Reflejo/fisiología , Caracteres Sexuales , Adulto , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Adulto Joven
9.
Exp Physiol ; 105(9): 1500-1506, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32691505

RESUMEN

NEW FINDINGS: What is the central question of this study? Delayed cardiovascular responses occur following a single bout of remote ischaemic preconditioning (RIPC). Is heart rate variability (HRV), a surrogate marker of cardiac vagal control, able to detect a delayed effect after a single bout of RIPC? Do repeated bouts of RIPC further alter HRV? What is the main finding and its importance? Indices of HRV indicated a shift in sympathovagal balance toward greater parasympathetic activity following 2 weeks of RIPC but not after a single bout of RIPC. Thus, repeated bouts of RIPC were necessary to elicit changes in autonomic function. ABSTRACT: Remote ischaemic preconditioning (RIPC), induced by brief periods of ischaemia followed by reperfusion, protects against ischaemia-reperfusion injury and improves microvascular function. However, the effect of RIPC on autonomic function remains unclear. We hypothesized that RIPC, administered as a single bout or repeated over a 2-week period, will increase markers of cardiac vagal control measured by heart rate variability (HRV). Thirty-two young adults performed a single bout (n = 13), repeated bouts (n = 11), or served as a time control (n = 8). RIPC sessions consisted of four repetitions of 5 min unilateral brachial artery occlusion interspersed by 5 min of reperfusion. For the single bout protocol, resting lead II electrocardiogram (ECG) was collected before and 24, 48, 72 and 168 h post-RIPC. The repeated bout protocol consisted of three 4-day periods of RIPC training, each interspersed by a 1-day break. Similar to time controls, ECG was collected before and 24 h after the last RIPC bout. HRV was analysed by power spectral density and symbolic dynamics using 350-beat ECG segments. After a single bout of RIPC, no changes in HRV were observed at any time point (P > 0.05). After 2 weeks of repeated RIPC, the percentage of zero-variation fragments (baseline = 13.1 ± 1.9%, post-RIPC = 6.9 ± 1.5%, P < 0.05) and the LF/HF ratio decreased (baseline = 1.1 ± 0.2, post-RIPC = 0.7 ± 0.1, P < 0.01), whereas the percentage of two-variation fragments increased (baseline = 42.9 ± 3.6%, post-RIPC = 52.5 ± 3.0%, P < 0.01). These data indicate that repeated RIPC is necessary to elicit changes in sympathovagal balance, specifically resulting in increased vagal and decreased sympathetic activity.


Asunto(s)
Frecuencia Cardíaca , Precondicionamiento Isquémico , Sistema Nervioso Parasimpático/fisiología , Adulto , Femenino , Corazón/fisiología , Hemodinámica , Humanos , Masculino , Nervio Vago/fisiología , Adulto Joven
10.
SAGE Open Med ; 8: 2050312120921603, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435491

RESUMEN

The incidence of Parkinson's disease is increasing worldwide. The motor dysfunctions are the hallmark of the disease, but patients also experience non-motor impairments, and over 40% of the patients experience coexistent abnormalities, such as orthostatic hypotension. Exercise training has been suggested as a coping resource to alleviate Parkinson's disease symptoms and delay disease progression. However, the body of knowledge is showing that the cardiovascular response to exercise in patients with Parkinson's disease is altered. Adequate cardiovascular and hemodynamic adjustments to exercise are necessary to meet the metabolic demands of working skeletal muscle properly. Therefore, since Parkinson's disease affects parasympathetic and sympathetic branches of the autonomic nervous system and the latter are crucial in ensuring these adjustments are adequately made, the understanding of these responses during exercise in this population is necessary. Several neural control mechanisms are responsible for the autonomic changes in the cardiovascular and hemodynamic systems seen during exercise. In this sense, the purpose of the present work is to review the current knowledge regarding the cardiovascular responses to dynamic and isometric/resistance exercise as well as the mechanisms by which the body maintains appropriate perfusion pressure to all organs during exercise in patients with Parkinson's disease. Results from patients with Parkinson's disease and animal models of Parkinson's disease provide the reader with a well-rounded knowledge base. Through this, we will highlight what is known and not known about how the neural control of circulation is responding during exercise and the adaptations that occur when individuals exercise regularly.

12.
Exp Physiol ; 104(6): 793-799, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30861251

RESUMEN

NEW FINDINGS: What is the central question of this study? The initial circulatory response to isometric exercise in young healthy subjects is thought to be cholinergically mediated. Do patients with Parkinson's disease, a specific population known to present cholinergic dysfunction, present impairment in these initial circulatory responses? What is the main finding and its importance? The initial reduction in total peripheral resistance was absent in patients with Parkinson's disease and in older subjects, which augmented the pressor response at the onset of isometric handgrip exercise. Given that cholinergic mechanisms play an important role in the circulatory responses at the onset of isometric exercise in humans, our data suggest that cholinergic mechanisms might be compromised with ageing. ABSTRACT: Physical exercise has been used as coping strategy for Parkinson's disease (PD). Thus, a better understanding of circulatory responses to exercise in this population is warranted. During the onset of isometric handgrip (IHG) exercise there is an increase in blood pressure (BP) and a reduction in the total peripheral resistance (TPR) in young subjects. This immediate reduction of TPR is thought to be mediated by a cholinergic mechanism. Given that PD also affects cholinergic neurons, we hypothesized that patients with PD would present blunted circulatory responses at the onset of IHG exercise. Mean BP, stroke volume, heart rate, cardiac output and TPR were measured during performance of 20 s of IHG at 40% maximal voluntary contraction in 12 patients with PD (66 ± 2 years old, 171 ± 7 cm, 74 ± 7 kg), 11 older subjects (65 ± 9 years old, 171 ± 7 cm, 74 ± 10 kg) and 10 young subjects (21 ± 1 years old, 178 ± 6 cm, 79 ± 9 kg). Isometric handgrip elicited an augmented BP increase in patients with PD and older subjects at 10 and 20 s compared with young subjects. However, the BP augmentation was lower at 20 s in patients with PD. The IHG-induced reduction in TPR was attenuated in patients with PD and older subjects compared with young subjects. Our results show that the circulatory responses at the onset of IHG are impaired in patients with PD and older subjects. Overall, these findings suggest that the cholinergic mechanism might be compromised with ageing.


Asunto(s)
Presión Sanguínea/fisiología , Fuerza de la Mano/fisiología , Contracción Isométrica/fisiología , Enfermedad de Parkinson/fisiopatología , Resistencia Vascular/fisiología , Anciano , Gasto Cardíaco/fisiología , Sistema Cardiovascular/fisiopatología , Ejercicio Físico/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Persona de Mediana Edad , Volumen Sistólico/fisiología , Adulto Joven
13.
Eur J Appl Physiol ; 119(1): 103-111, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30293100

RESUMEN

PURPOSE: To investigate the effect of isolated muscle metaboreflex activation on spontaneous cardiac baroreflex sensitivity (cBRS), and to characterize the potential sex-related differences in this interaction in young healthy subjects. METHODS: 40 volunteers (20 men and 20 women, age: 22 ± 0.4 year) were recruited. After 5-min rest period, the subjects performed 90 s of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 3 min of post-exercise ischemia (PEI). Beat-to-beat heart rate and arterial blood pressure were continuously measured by finger photopletysmography. Spontaneous cBRS was assessed using the sequence technique and heart rate variability was measured in time (RMSSD-standard deviation of the RR intervals) and frequency domains (LF-low and HF-high frequency power). RESULTS: Resting cBRS was similar between men and women. During PEI, cBRS was increased in men (Δ3.0 ± 1.1 ms mmHg- 1, P = 0.03) but was unchanged in women (Δ-0.04 ± 1.0 ms mmHg- 1, P = 0.97). In addition, RMSSD and HF power of heart rate variability increased in women (Δ7.4 ± 2.6 ms, P = 0.02; Δ373.4 ± 197.3 ms2; P = 0.04, respectively) and further increased in men (Δ26.4 ± 7.1 ms, P < 0.01; Δ1874.9 ± 756.2 ms2; P = 0.02, respectively). Arterial blood pressure increased from rest during handgrip exercise and remained elevated during PEI in both groups, however, these responses were attenuated in women. CONCLUSIONS: These findings allow us to suggest a sex-related difference in spontaneous cBRS elicited by isolated muscle metaboreflex activation in healthy humans.


Asunto(s)
Barorreflejo , Presión Sanguínea , Frecuencia Cardíaca , Isquemia Miocárdica/fisiopatología , Acondicionamiento Físico Humano/fisiología , Adulto , Femenino , Fuerza de la Mano , Humanos , Contracción Isométrica , Masculino , Isquemia Miocárdica/etiología , Acondicionamiento Físico Humano/efectos adversos , Factores Sexuales
14.
Eur J Appl Physiol ; 119(3): 621-632, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30542933

RESUMEN

PURPOSE: High cardiac vagal control in endurance athletes has been generally associated with adequate recovery from training and readiness to cope high-intensity training. A method that improves cardiac vagal control in endurance athletes could therefore be advantageous. Accordingly, we sought to test whether ischemic preconditioning (IPC) could enhance cardiac vagal control in endurance runners. METHODS: Fifteen subjects underwent IPC, sham ultrasound (SHAM) or control (CT), in random order. Subjects were informed both IPC and SHAM would be beneficial vs. CT (i.e., similar placebo induction), and IPC would be harmless despite ischemia sensations (i.e., nocebo avoidance). Resting cardiac vagal control was assessed via respiratory sinus arrhythmia (RSA) and heart rate variability (HRV) indexes. Post-exercise cardiac vagal control was assessed via heart rate recovery [HR time constant decay (T30) and absolute HR decay (HRR30s)] during 30-s breaks of a discontinuous incremental test. Capillary blood samples were collected for lactate threshold identification. RESULTS: RSA and HRV were similar among interventions at pre- and post-intervention assessments. Lactate threshold occurred at 85 ± 4% of maximal effort. T30 was similar among interventions, but IPC increased HRR30s at 70% and 75% of maximal effort vs. SHAM and CT (70%: IPC = 31 ± 2 vs. SHAM = 26 ± 3 vs. CT = 26 ± 2 bpm, mean ± SEM, P < 0.01; 75%: IPC = 29 ± 2 vs. SHAM = 25 ± 2 vs. CT = 24 ± 2 bpm, P < 0.01). CONCLUSION: IPC did not change resting cardiac vagal control, but boosted fast post-exercise cardiac vagal reactivation at exercise intensities below lactate threshold in endurance runners.


Asunto(s)
Precondicionamiento Isquémico , Resistencia Física/fisiología , Carrera/fisiología , Nervio Vago/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Ácido Láctico/sangre , Masculino , Descanso/fisiología
15.
Front Physiol ; 9: 1465, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30416451

RESUMEN

Repeated sprint exercise (RSE) acutely impairs post-exercise heart rate (HR) recovery (HRR) and time-domain heart rate variability (i. e., RMSSD), likely in part, due to lactic acidosis-induced reduction of cardiac vagal reactivation. In contrast, ischemic preconditioning (IPC) mediates cardiac vagal activation and augments energy metabolism efficiency during prolonged ischemia followed by reperfusion. Therefore, we investigated whether IPC could improve recovery of cardiac autonomic control from RSE partially via improved energy metabolism responses to RSE. Fifteen men team-sport practitioners (mean ± SD: 25 ± 5 years) were randomly exposed to IPC in the legs (3 × 5 min at 220 mmHg) or control (CT; 3 × 5 min at 20 mmHg) 48 h, 24 h, and 35 min before performing 3 sets of 6 shuttle running sprints (15 + 15 m with 180° change of direction and 20 s of active recovery). Sets 1 and 2 were followed by 180 s and set 3 by 360 s of inactive recovery. Short-term HRR was analyzed after all sets via linear regression of HR decay within the first 30 s of recovery (T30) and delta from peak HR to 60 s of recovery (HRR60s). Long-term HRR was analyzed throughout recovery from set 3 via first-order exponential regression of HR decay. Moreover, RMSSD was calculated using 30-s data segments throughout recovery from set 3. Energy metabolism responses were inferred via peak pulmonary oxygen uptake ( V ˙ O 2 peak), peak carbon dioxide output ( V ˙ O 2 peak), peak respiratory exchange ratio (RERpeak), first-order exponential regression of V ˙ O 2 decay within 360 s of recovery and blood lactate concentration ([Lac-]). IPC did not change T30, but increased HRR60s after all sets (condition main effect: P = 0.03; partial eta square (η2 p ) = 0.27, i.e., large effect size). IPC did not change long-term HRR and RMSSD throughout recovery, nor did IPC change any energy metabolism parameter. In conclusion, IPC accelerated to some extent the short-term recovery, but did not change the long-term recovery of cardiac autonomic control from RSE, and such accelerator effect was not accompanied by any IPC effect on surrogates of energy metabolism responses to RSE.

17.
J Neurophysiol ; 120(4): 1516-1524, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29947592

RESUMEN

Patients with Parkinson's disease (PD) exhibit attenuated cardiovascular responses to exercise. The underlying mechanisms that are potentially contributing to these impairments are not fully understood. Therefore, we sought to test the hypothesis that patients with PD exhibit blunted cardiovascular responses to isolated muscle metaboreflex activation following exercise. For this, mean blood pressure, cardiac output, and total peripheral resistance were measured using finger photoplethysmography and the Modelflow method in 11 patients with PD [66 ± 2 yr; Hoehn and Yahr score: 2 ± 1 a.u.; time since diagnosis: 7 ± 1 yr; means ± SD) and 9 age-matched controls (66 ± 3 yr). Measurements were obtained at rest, during isometric handgrip exercise performed at 40% maximal voluntary contraction, and during postexercise ischemia. Also, a cold pressor test was assessed to confirm that blunted cardiovascular responses were specific to exercise and not representative of generalized sympathetic responsiveness. Changes in mean blood pressure were attenuated in patients with PD during handgrip (PD: ∆25 ± 2 mmHg vs. controls: ∆31 ± 3 mmHg; P < 0.05), and these group differences remained during postexercise ischemia (∆17 ± 1 mmHg vs. ∆26 ± 1 mmHg, respectively; P < 0.01). Additionally, changes in total peripheral resistance were attenuated during exercise and postexercise ischemia, indicating blunted reflex vasoconstriction in patients with PD. Responses to cold pressor test did not differ between groups, suggesting no group differences in generalized sympathetic responsiveness. Our results support the concept that attenuated cardiovascular responses to exercise observed in patients with PD are, at least in part, explained by an altered skeletal muscle metaboreflex. NEW & NOTEWORTHY Patients with Parkinson's disease (PD) presented blunted cardiovascular responses to exercise. We showed that cardiovascular response evoked by the metabolic component of the exercise pressor reflex is blunted in patients with PD. Furthermore, patients with PD presented similar pressor response during the cold pressor test compared with age-matched controls. Altogether, our results support the hypothesis that attenuated cardiovascular responses to exercise observed in patients with PD are mediate by an altered skeletal muscle metaboreflex.


Asunto(s)
Presión Sanguínea , Ejercicio Físico , Músculo Esquelético/fisiología , Enfermedad de Parkinson/fisiopatología , Reflejo , Anciano , Gasto Cardíaco , Fuerza de la Mano , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Vasoconstricción
19.
Am J Physiol Heart Circ Physiol ; 314(4): H716-H723, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351468

RESUMEN

Previous studies have indicated that central GABAergic mechanisms are involved in the heart rate (HR) responses at the onset of exercise. On the basis of previous research that showed similar increases in HR during passive and active cycling, we reasoned that the GABAergic mechanisms involved in the HR responses at the exercise onset are primarily mediated by muscle mechanoreceptor afferents. Therefore, in this study, we sought to determine whether central GABA mechanisms are involved in the muscle mechanoreflex-mediated HR responses at the onset of exercise in humans. Twenty-eight healthy subjects (14 men and 14 women) aged between 18 and 35 yr randomly performed three bouts of 5-s passive and active cycling under placebo and after oral administration of diazepam (10 mg), a benzodiazepine that produces an enhancement in GABAA activity. Beat-to-beat HR (electrocardiography) and arterial blood pressure (finger photopletysmography) were continuously measured. Electromyography of the vastus lateralis was obtained to confirm no electrical activity during passive trials. HR increased from rest under placebo and further increased after administration of diazepam in both passive (change: 12 ± 1 vs. 17 ± 1 beats/min, P < 0.01) and active (change: 14 ± 1 vs. 18 ± 1 beats/min, P < 0.01) cycling. Arterial blood pressure increased from rest similarly during all conditions ( P > 0.05). Importantly, no sex-related differences were found in any variables during experiments. These findings demonstrate, for the first time, that the GABAergic mechanisms significantly contribute to the muscle mechanoreflex-mediated HR responses at the onset of exercise in humans. NEW & NOTEWORTHY We found that passive and voluntary cycling evokes similar increases in heart rate and that these responses were enhanced after diazepam administration, a benzodiazepine that enhances GABAA activity. These findings suggest that the GABAergic system may contribute to the muscle mechanoreflex-mediated vagal withdrawal at the onset of exercise in humans.


Asunto(s)
Encéfalo/efectos de los fármacos , Diazepam/administración & dosificación , Ejercicio Físico/fisiología , Agonistas de Receptores de GABA-A/administración & dosificación , Neuronas GABAérgicas/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Corazón/inervación , Husos Musculares/metabolismo , Músculo Cuádriceps/inervación , Reflejo/efectos de los fármacos , Adolescente , Adulto , Presión Arterial/efectos de los fármacos , Ciclismo , Encéfalo/metabolismo , Estudios Cruzados , Método Doble Ciego , Femenino , Neuronas GABAérgicas/metabolismo , Humanos , Masculino , Músculo Cuádriceps/metabolismo , Distribución Aleatoria , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Factores de Tiempo , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
20.
Brain Stimul ; 10(5): 875-881, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28566194

RESUMEN

BACKGROUND: Despite positive outcomes of transcutaneous vagus nerve stimulation (tVNS) via the auricular branch of the vagus nerve (ABVN), the mechanisms underlying these outcomes remain unclear. Additionally, previous studies have not been controlled the possible placebo effects of tVNS. OBJECTIVE: To test the hypothesis that tVNS acutely improves spontaneous cardiac baroreflex sensitivity (cBRS) and autonomic modulation, and that these effects are specific to stimulation of ABVN. METHODS: Thirteen healthy men (23±1yrs) were randomized across three experimental visits. In active tVNS, electrodes were placed on the tragus of the ear and electrical current was applied by using a Transcutaneous Electrical Nerve Stimulation device. A time-control visit was performed with the electrodes placed on tragus, but no current was applied (sham-T). Additionally, to avoid a placebo effect, another sham protocol was performed with same electrical current of the active visit, but the electrodes were placed on the ear lobe (an area without cutaneous nerve endings from the vagus - tLS). Beat-to-beat heart rate (HR) and blood pressure (BP) were monitored at rest, during stimulation (active, sham-T and tLS) and recovery. cBRS was measured via sequence technique. Both HR (HRV) and BP variability (BPV) were also measured. RESULTS: Arterial BP and BPV were not affected by any active or sham protocols (P > 0.05). Resting HR and LF/HF ratio of HRV decreased (Δ-3.4 ± 1% and Δ-15 ± 12%, P < 0.05, respectively) and cBRS increased (Δ24 ± 8%, P < 0.05) during active tVNS, but were unchanged during both sham protocols. CONCLUSION: tVNS acutely improves cBRS and autonomic modulation in healthy young men.


Asunto(s)
Barorreflejo/fisiología , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Estudios Cruzados , Humanos , Masculino , Estimulación Eléctrica Transcutánea del Nervio/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...