Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS One ; 17(10): e0275683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36264926

RESUMEN

Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders and affects approximately 4% of the global population. The diagnosis of IBS can be made based on symptoms using the validated Rome criteria and ruling out commonly occurring organic diseases. Although biomarkers exist for "IBS mimickers" such as celiac disease and inflammatory bowel disease (IBD), no such test exists for IBS. DNA microarrays of colonic tissue have been used to identify disease-associated variants in other gastrointestinal (GI) disorders. In this study, our objective was to identify biomarkers and unique gene expression patterns that may define the pathological state of IBS. Mucosal tissue samples were collected from the sigmoid colon of 29 participants (11 IBS and 18 healthy controls). DNA microarray analysis was used to assess gene expression profiling. Extraction and purification of RNA were then performed and used to synthesize cDNA. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was employed to identify differentially expressed genes in patients diagnosed with IBS compared to healthy, non-IBS patient-derived cDNA. Additional testing probed vitamin D-mediated regulation of select genes associated with serotonergic metabolism. DNA microarray analyses led to the identification of 858 differentially expressed genes that may characterize the IBS pathological state. After screening a series of genes using a combination of gene ontological analysis and RT-qPCR, this spectrum of potential IBS biomarkers was narrowed to 23 genes, some of which are regulated by vitamin D. Seven putative IBS biomarkers, including genes involved in serotonin metabolism, were identified. This work further supports the hypothesis that IBS pathophysiology is evident within the human transcriptome and that vitamin D modulates differential expression of genes in IBS patients. This suggests that IBS pathophysiology may also involve vitamin D deficiency and/or an irregularity in serotonin metabolism.


Asunto(s)
Síndrome del Colon Irritable , Humanos , Biomarcadores/metabolismo , Diarrea/patología , ADN Complementario/metabolismo , Mucosa Intestinal/metabolismo , Síndrome del Colon Irritable/diagnóstico , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/complicaciones , ARN/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Serotonina/genética , Serotonina/metabolismo , Transcriptoma , Triptófano Hidroxilasa/genética , Vitamina D/metabolismo , Vitaminas/metabolismo
2.
JAMA Neurol ; 78(10): 1236-1248, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459874

RESUMEN

Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. Objective: To identify the genetic variants associated with juvenile ALS. Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members. Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Predisposición Genética a la Enfermedad/genética , Serina C-Palmitoiltransferasa/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Mutación , Secuenciación del Exoma , Adulto Joven
3.
Mov Disord ; 36(10): 2346-2357, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34076298

RESUMEN

BACKGROUND: Cytoplasmic inclusions of α-synuclein (α-syn) in brainstem neurons are characteristic of idiopathic Parkinson's disease (PD). PD also entails α-syn buildup in sympathetic nerves. Among genetic forms of PD, the relative extents of sympathetic intraneuronal accumulation of α-syn have not been reported. OBJECTIVE: This cross-sectional observational study compared magnitudes of intraneuronal deposition of α-syn in common and rare genetic forms of PD. METHODS: α-Syn deposition was quantified by the α-syn-tyrosine hydroxylase colocalization index in C2 cervical skin biopsies from 65 subjects. These included 30 subjects with pathogenic mutations in SNCA (n = 3), PRKN [biallelic (n = 7) and monoallelic (n = 3)], LRRK2 (n = 7), GBA (n = 7), or PARK7/DJ1 [biallelic (n = 1) and monoallelic (n = 2)]. Twenty-five of the mutation carriers had PD and five did not. Data were also analyzed from 19 patients with idiopathic PD and 16 control participants. RESULTS: α-Syn deposition varied as a function of genotype (F = 16.7, P < 0.0001). It was above the control range in 100% of subjects with SNCA mutations, 100% with LRRK2 mutations, 95% with idiopathic PD, 83% with GBA mutations, and 0% with biallelic PRKN mutations. α-Syn deposition in the biallelic PRKN group was significantly higher than in the control group. In addition, patients with biallelic PRKN mutations had higher α-syn deposition than their unaffected siblings. CONCLUSIONS: Individuals with SNCA, DJ-1, LRRK2, or GBA mutations have substantial intraneuronal α-syn deposition in sympathetic noradrenergic nerves in skin biopsies, whereas those with biallelic PRKN mutations do not. Biallelic PRKN patients may have mildly increased α-syn deposition compared with control subjects. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Estudios Transversales , Humanos , Mutación/genética , Fibras Nerviosas , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
4.
Nat Genet ; 53(3): 294-303, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33589841

RESUMEN

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad por Cuerpos de Lewy/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genoma Humano , Glucosilceramidasa/genética , Humanos , Proteínas Nucleares/genética , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Proteínas Supresoras de Tumor/genética , alfa-Sinucleína/genética
5.
ACS Chem Neurosci ; 12(5): 857-871, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33570383

RESUMEN

There is considerable interest in identifying effective and safe drugs for neurodegenerative disorders. Cell culture and animal model work have demonstrated that modulating gene expression through RXR-mediated pathways may mitigate or reverse cognitive decline. However, because RXR is a dimeric partner for several transcription factors, activating off-target transcription is a concern with RXR ligands (rexinoids). This off-target gene modulation leads to unwanted side effects that can include low thyroid function and significant hyperlipidemia. There is a need to develop rexinoids that have binding specificity for subsets of RXR heterodimers, to drive desired gene modulation, but that do not induce spurious effects. Herein, we describe experiments in which we analyze a series of novel and previously reported rexinoids for their ability to modulate specific gene pathways implicated in neurodegenerative disorders employing a U87 cell culture model. We demonstrate that, compared to the FDA-approved rexinoid bexarotene (1), several of these compounds are equally or more effective at stimulating gene expression via LXREs or Nurr1/NBREs and are superior at inducing ApoE and/or tyrosine hydroxylase (TH) gene and protein expression, including analogs 8, 9, 13, 14, 20, 23, and 24, suggesting a possible therapeutic role for these compounds in Alzheimer's or Parkinson's disease (PD). A subset of these potent RXR agonists can synergize with a presumed Nurr1 ligand and antimalarial drug (amodiaquine) to further enhance Nurr1/NBREs-directed transcription. This novel discovery has potential clinical implications for treatment of PD since it suggests that the combination of an RXR agonist and a Nurr1 ligand can significantly enhance RXR-Nurr1 heterodimer activity and drive enhanced therapeutic expression of the TH gene to increase endogenous synthesis of dopamine. These data indicate that is it possible and prudent to develop novel rexinoids for testing of gene expression and side effect profiles for use in potential treatment of neurodegenerative disorders, as individual rexinoids can have markedly different gene expression profiles but similar structures.


Asunto(s)
Apolipoproteínas E , Glioblastoma , Receptores X Retinoide/agonistas , Tirosina 3-Monooxigenasa , Línea Celular Tumoral , Humanos , Transducción de Señal
6.
Neuron ; 109(3): 448-460.e4, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242422

RESUMEN

We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Proteína Huntingtina/genética , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/patología , Humanos , Mutación , Secuenciación Completa del Genoma
7.
Biochem Biophys Rep ; 24: 100825, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33088927

RESUMEN

Mediated by the nuclear vitamin D receptor (VDR), the hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D), is known to regulate expression of genes impacting calcium and phosphorus metabolism, the immune system, and behavior. Urolithin A, a nutrient metabolite derived from pomegranate, possibly acting through AMP kinase (AMPK) signaling, supports respiratory muscle health in rodents and longevity in C. elegans by inducing oxidative damage-reversing genes and mitophagy. We show herein that urolithin A enhances transcriptional actions of 1,25D driven by co-transfected vitamin D responsive elements (VDREs), and dissection of this genomic effect in cell culture reveals: 1) urolithin A concentration-dependency, 2) occurrence with isolated natural VDREs, 3) nuclear receptor selectivity for VDR over ER, LXR and RXR, and 4) significant 3- to 13-fold urolithin A-augmentation of 1,25D-dependent mRNA encoding the widely expressed 1,25D-detoxification enzyme, CYP24A1, a benchmark vitamin D target gene. Relevant to potential behavioral effects of vitamin D, urolithin A elicits enhancement of 1,25D-dependent mRNA encoding tryptophan hydroxylase-2 (TPH2), the serotonergic neuron-expressed initial enzyme in tryptophan metabolism to serotonin. Employing quantitative real time-PCR, we demonstrate that TPH2 mRNA is induced 1.9-fold by 10 nM 1,25D treatment in culture of differentiated rat serotonergic raphe (RN46A-B14) cells, an effect magnified 2.5-fold via supplementation with 10 µM urolithin A. This potentiation of 1,25D-induced TPH2 mRNA by urolithin A is followed by a 3.1- to 3.7-fold increase in serotonin concentration in culture medium from the pertinent neuronal cell line, RN46A-B14. These results are consistent with the concept that two natural nutrient metabolites, urolithin A from pomegranate and 1,25D from sunlight/vitamin D, likely acting via AMPK and VDR, respectively, cooperate mechanistically to effect VDRE-mediated regulation of gene expression in neuroendocrine cells. Finally, gedunin, a neuroprotective natural product from Indian neem tree that impacts the brain derived neurotropic factor pathway, similarly potentiates 1,25D/VDR-action.

8.
Mov Disord ; 34(12): 1851-1863, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31660654

RESUMEN

BACKGROUND: The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases. OBJECTIVES: To perform the largest PD genome-wide association study restricted to a single country. METHODS: We performed a GWAS for both risk of PD and age at onset in 7,849 Spanish individuals. Further analyses included population-specific risk haplotype assessments, polygenic risk scoring through machine learning, Mendelian randomization of expression, and methylation data to gain insight into disease-associated loci, heritability estimates, genetic correlations, and burden analyses. RESULTS: We identified a novel population-specific genome-wide association study signal at PARK2 associated with age at onset, which was likely dependent on the c.155delA mutation. We replicated four genome-wide independent signals associated with PD risk, including SNCA, LRRK2, KANSL1/MAPT, and HLA-DQB1. A significant trend for smaller risk haplotypes at known loci was found compared to similar studies of non-Spanish origin. Seventeen PD-related genes showed functional consequence by two-sample Mendelian randomization in expression and methylation data sets. Long runs of homozygosity at 28 known genes/loci were found to be enriched in cases versus controls. CONCLUSIONS: Our data demonstrate the utility of the Spanish risk haplotype substructure for future fine-mapping efforts, showing how leveraging unique and diverse population histories can benefit genetic studies of complex diseases. The present study points to PARK2 as a major hallmark of PD etiology in Spain. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Mapeo Cromosómico , Costo de Enfermedad , Metilación de ADN , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Herencia Multifactorial , España , Ubiquitina-Proteína Ligasas/genética
9.
Neurol Genet ; 5(4): e347, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31404212

RESUMEN

OBJECTIVE: Patients with corticobasal syndrome (CBS) present with heterogeneous clinical features, including asymmetric parkinsonism, dyspraxia, aphasia, and cognitive impairment; to better understand the genetic etiology of this rare disease, we undertook a genetic analysis of microtubule-associated protein tau (MAPT). METHODS: We performed a genetic evaluation of MAPT mutations in 826 neurologically healthy controls and 173 cases with CBS using the Illumina NeuroChip genotyping array. RESULTS: We identified 2 patients with CBS heterozygous for a rare mutation in MAPT (p.V363I) that is located in the highly conserved microtubule-binding domain. One patient was pathologically confirmed and demonstrated extensive 4-repeat-tau-positive thread pathology, achromatic neurons, and astrocytic plaques consistent with corticobasal degeneration (CBD). CONCLUSIONS: We report 2 CBS cases carrying the rare p.V363I MAPT mutation, one of which was pathologically confirmed as CBD. Our findings support the notion that this rare coding change is pathogenic.

10.
Neurobiol Dis ; 127: 142-146, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30798004

RESUMEN

Atypical parkinsonism syndromes are a heterogeneous group of neurodegenerative disorders that include corticobasal degeneration (CBD), Lewy body dementia (LBD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). The APOE ε4 allele is a well-established risk factor for Alzheimer's disease; however, the role of APOE in atypical parkinsonism syndromes remains controversial. To examine the associations of APOE ε4 and ε2 alleles with risk of developing these syndromes, a total of 991 pathologically-confirmed atypical parkinsonism cases were genotyped using the Illumina NeuroChip array. We also performed genotyping and logistic regression analyses to examine APOE frequency and associated risk in patients with Alzheimer's disease (n = 571) and Parkinson's disease (n = 348). APOE genotypes were compared to those from neurologically healthy controls (n = 591). We demonstrate that APOE ε4 and ε2 carriers have a significantly increased and decreased risk, respectively, of developing Alzheimer's disease (ε4: OR: 4.13, 95% CI: 3.23-5.26, p = 3.67 × 10-30; ε2: OR: 0.21, 95% CI: 0.13-0.34; p = 5.39 × 10-10) and LBD (ε4: OR: 2.94, 95% CI: 2.34-3.71, p = 6.60 × 10-20; ε2: OR = OR: 0.39, 95% CI: 0.26-0.59; p = 6.88 × 10-6). No significant associations with risk for CBD, MSA, or PSP were observed. We also show that APOE ε4 decreases survival in a dose-dependent manner in Alzheimer's disease and LBD. Taken together, this study does not provide evidence to implicate a role of APOE in the neuropathogenesis of CBD, MSA, or PSP. However, we confirm association of the APOE ε4 allele with increased risk for LBD, and importantly demonstrate that APOE ε2 reduces risk of this disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Demencia/genética , Enfermedad por Cuerpos de Lewy/genética , Atrofia de Múltiples Sistemas/genética , Enfermedad de Parkinson/genética , Parálisis Supranuclear Progresiva/genética , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/patología , Encéfalo/patología , Demencia/patología , Femenino , Genotipo , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/patología , Parálisis Supranuclear Progresiva/patología
12.
Neurobiol Aging ; 76: 214.e1-214.e9, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30528841

RESUMEN

Molecular genetic research provides unprecedented opportunities to examine genotype-phenotype correlations underlying complex syndromes. To investigate pathogenic mutations and genotype-phenotype relationships in diverse neurodegenerative conditions, we performed a rare variant analysis of damaging mutations in autopsy-confirmed neurodegenerative cases from the Johns Hopkins Brain Resource Center (n = 1243 patients). We used NeuroChip genotyping and C9orf72 hexanucleotide repeat analysis to rapidly screen our cohort for disease-causing mutations. In total, we identified 42 individuals who carried a pathogenic mutation in LRRK2, GBA, APP, PSEN1, MAPT, GRN, C9orf72, SETX, SPAST, or CSF1R, and we provide a comprehensive description of the diverse clinicopathological features of these well-characterized cases. Our study highlights the utility of high-throughput genetic screening arrays to establish a molecular diagnosis in individuals with complex neurodegenerative syndromes, to broaden disease phenotypes and to provide insights into unexpected disease associations.


Asunto(s)
Estudios de Asociación Genética , Ensayos Analíticos de Alto Rendimiento/métodos , Mutación , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Anciano , Anciano de 80 o más Años , Proteína C9orf72/genética , Estudios de Cohortes , Expansión de las Repeticiones de ADN , Femenino , Técnicas de Genotipaje , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular/métodos
14.
Genes Nutr ; 13: 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008960

RESUMEN

BACKGROUND: Diminished brain levels of two neurohormones, 5-hydroxytryptamine (5-HT; serotonin) and 1,25-dihydroxyvitamin D3 (1,25D; active vitamin D metabolite), are proposed to play a role in the atypical social behaviors associated with psychological conditions including autism spectrum disorders and depression. We reported previously that 1,25D induces expression of tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway to 5-HT, in cultured rat serotonergic neuronal cells. However, other enzymes and transporters in the pathway of tryptophan metabolism had yet to be examined with respect to the actions of vitamin D. Herein, we probed the response of neuronal cells to 1,25D by quantifying mRNA expression of serotonin synthesis isozymes, TPH1 and TPH2, as well as expression of the serotonin reuptake transporter (SERT), and the enzyme responsible for serotonin catabolism, monoamine oxidase-A (MAO-A). We also assessed the direct production of serotonin in cell culture in response to 1,25D. RESULTS: Employing quantitative real-time PCR, we demonstrate that TPH-1/-2 mRNAs are 28- to 33-fold induced by 10 nM 1,25D treatment of cultured rat serotonergic neuronal cells (RN46A-B14), and the enhancement of TPH2 mRNA by 1,25D is dependent on the degree of neuron-like character of the cells. In contrast, examination of SERT, the gene product of which is a target for the SSRI-class of antidepressants, and MAO-A, which encodes the predominant catabolic enzyme in the serotonin pathway, reveals that their mRNAs are 51-59% repressed by 10 nM 1,25D treatment of RN46A-B14 cells. Finally, serotonin concentrations are significantly enhanced (2.9-fold) by 10 nM 1,25D in this system. CONCLUSIONS: These results are consistent with the concept that vitamin D maintains extracellular fluid serotonin concentrations in the brain, thereby offering an explanation for how vitamin D could influence the trajectory and development of neuropsychiatric disorders. Given the profile of gene regulation in cultured RN46A-B14 serotonergic neurons, we conclude that 1,25D acts not only to induce serotonin synthesis, but also functions at an indirect, molecular-genomic stage to mimic SSRIs and MAO inhibitors, likely elevating serotonin in the CNS. These data suggest that optimal vitamin D status may contribute to improving behavioral pathophysiologies resulting from dysregulation of serotonergic neurotransmission.

15.
Nutrients ; 10(2)2018 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-29401702

RESUMEN

Treatment with 1,25-dihydroxyvitamin D3 (1,25D) improves psoriasis symptoms, possibly by inducing the expression of late cornified envelope (LCE)3 genes involved in skin repair. In psoriasis patients, the majority of whom harbor genomic deletion of LCE3B and LCE3C (LCE3C_LCE3B-del), we propose that certain dietary analogues of 1,25D activate the expression of residual LCE3A/LCE3D/LCE3E genes to compensate for the loss of LCE3B/LCE3C in the deletant genotype. Herein, human keratinocytes (HEKn) homozygous for LCE3C_LCE3B-del were treated with docosahexaenoic acid (DHA) and curcumin, two low-affinity, nutrient ligands for the vitamin D receptor (VDR). DHA and curcumin induce the expression of LCE3A/LCE3D/LCE3E mRNAs at concentrations corresponding to their affinity for VDR. Moreover, immunohistochemical quantitation revealed that the treatment of keratinocytes with DHA or curcumin stimulates LCE3 protein expression, while simultaneously opposing the tumor necrosis factor-alpha (TNFα)-signaled phosphorylation of mitogen activated protein (MAP) kinases, p38 and Jun amino-terminal kinase (JNK), thereby overcoming inflammation biomarkers elicited by TNFα challenge. Finally, DHA and curcumin modulate two transcription factors relevant to psoriatic inflammation, the activator protein-1 factor Jun B and the nuclear receptor NR4A2/NURR1, that is implicated as a mediator of VDR ligand-triggered gene control. These findings provide insights into the mechanism(s) whereby dietary VDR ligands alter inflammatory and barrier functions relevant to skin repair, and may provide a molecular basis for improved treatments for mild/moderate psoriasis.


Asunto(s)
Curcumina/farmacología , Ácidos Docosahexaenoicos/farmacología , Queratinocitos/efectos de los fármacos , Psoriasis/genética , Receptores de Calcitriol/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Dieta , Regulación de la Expresión Génica/efectos de los fármacos , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Queratinocitos/metabolismo , Ligandos , Psoriasis/prevención & control , Ratas , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Piel/metabolismo
16.
Am J Emerg Med ; 36(4): 677-679, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29395769

RESUMEN

OBJECTIVES: To determine if a physician-patient language barrier impacts the diagnostic accuracy of pulmonary embolism (PE) evaluation. METHODS: A retrospective chart review, conducted between June 2015 and December 2016, of a consecutive sample of diagnostic computed tomography pulmonary angiogram (CTPA) studies performed on adult patients. Positive and negative CTPA scans were further categorized by patient language and the positive diagnostic yield was determined for each language group. A post collection sub-analysis was performed to determine the yield when interpreter services were identified as necessary. RESULTS: The yield for English speaking patients was 10.24% (92/898, 95% CI 8.39% to 12.36%), similar to the yield in Spanish speaking patients of 9.40% (25/266, 95% CI 6.31% to 13.37%, P=0.69). This contrasted with the yield in patients who identified as bilingual, which was significantly lower at 1.41% (1/71, 95% CI 0.07% to 6.75%) compared to both English-(P<0.02) and Spanish-only speakers (P<0.03). The yield for non-English speaking patients who requested an interpreter was 7.37% (14/190, 95% CI 4.26% to 11.77%) versus 3.23% (2/62, 95% CI 0.54% to 10.25%, P=0.25) in those who did not. CONCLUSIONS: The diagnostic yield in English- and Spanish-only speaking patients was similar, however, the yield in those that self-identified as bilingual was significantly lower. In patient groups in which a language barrier existed and an interpreter was not utilized, there was a trend toward a lower diagnostic yield. This suggests an increased propensity to order diagnostic imaging when potential communication barriers exist.


Asunto(s)
Barreras de Comunicación , Angiografía por Tomografía Computarizada , Relaciones Médico-Paciente , Embolia Pulmonar/diagnóstico por imagen , Hispánicos o Latinos , Humanos , Estudios Retrospectivos , Medición de Riesgo/etnología
17.
J Neurogastroenterol Motil ; 24(1): 96-106, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29291611

RESUMEN

BACKGROUND/AIMS: Irritable bowel syndrome (IBS) is a multifaceted disorder that afflicts millions of individuals worldwide. IBS is currently diagnosed based on the presence/duration of symptoms and systematic exclusion of other conditions. A more direct manner to identify IBS is needed to reduce healthcare costs and the time required for accurate diagnosis. The overarching objective of this work is to identify gene expression-based biological signatures and biomarkers of IBS. METHODS: Gene transcripts from 24 tissue biopsy samples were hybridized to microarrays for gene expression profiling. A combination of multiple statistical analyses was utilized to narrow the raw microarray data to the top 200 differentially expressed genes between IBS versus control subjects. In addition, quantitative polymerase chain reaction was employed for validation of the DNA microarray data. Gene ontology/pathway enrichment analysis was performed to investigate gene expression patterns in biochemical pathways. Finally, since vitamin D has been shown to modulate serotonin production in some models, the relationship between serum vitamin D and IBS was investigated via 25-hydroxyvitamin D (25[OH]D) chemiluminescence immunoassay. RESULTS: A total of 858 genetic features were identified with differential expression levels between IBS and asymptomatic populations. Gene ontology enrichment analysis revealed the serotonergic pathway as most prevalent among the differentially expressed genes. Further analysis via real-time polymerase chain reaction suggested that IBS patient-derived RNA exhibited lower levels of tryptophan hydroxylase-1 expression, the enzyme that catalyzes the rate-limiting step in serotonin biosynthesis. Finally, mean values for 25(OH)D were lower in IBS patients relative to non-IBS controls. CONCLUSIONS: Values for serum 25(OH)D concentrations exhibited a trend towards lower vitamin D levels within the IBS cohort. In addition, the expression of select IBS genetic biomarkers, including tryptophan hydroxylase 1, was modulated by vitamin D. Strikingly, the direction of gene regulation elicited by vitamin D in colonic cells is "opposite" to the gene expression profile observed in IBS patients, suggesting that vitamin D may help "reverse" the pathological direction of biomarker gene expression in IBS. Thus, our results intimate that IBS pathogenesis and pathophysiology may involve dysregulated serotonin production and/or vitamin D insufficiency.

18.
J Steroid Biochem Mol Biol ; 172: 117-129, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28636886

RESUMEN

The hormonal metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), binds to the vitamin D receptor (VDR) and promotes heterodimerization of VDR with a retinoid-X-receptor (RXR) to genomically regulate diverse cellular processes. Herein, it is revealed for the first time that VDR is post-translationally acetylated, and that VDR immunoprecipitated from human embryonic kidney (HEK293) cells displays a dramatic decrease in acetylated receptor in the presence of 1,25D-ligand, sirtuin-1 (SIRT1) deacetylase, or the resveratrol activator of SIRT1. To elucidate the functional significance of VDR deacetylation, vitamin-d-responsive-element (VDRE)-based transcriptional assays were performed to determine if deacetylase overexpression affects VDR/VDRE-driven transcription. In HEK293 kidney and TE85 bone cells, co-transfection of low amounts (1-5ng) of a SIRT1-expression vector elicits a reproducible and statistically significant enhancement (1.3- to 2.6-fold) in transcription mediated by VDREs from the CYP3A4 and cyp24a1 genes, where the magnitude of response to 1,25D-ligand is 6- to 30-fold. Inhibition of SIRT1 via EX-527, or utilization of a SIRT1 loss-of-function mutant (H363Y), resulted in abrogation of SIRT1-mediated VDR potentiation. Studies with a novel, non-acetylatable VDR mutant (K413R) showed that the mutant VDR possesses enhanced responsiveness to 1,25D, in conjunction with reduced, but still significant, sensitivity to exogenous SIRT1, indicating that acetylation of lysine 413 is relevant, but that other acetylated residues in VDR contribute to modulation of its activity. We conclude that the acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This regulatory loop is reversed by SIRT1-catalyzed deacetylation of VDR to amplify VDR signaling and 1,25D actions.


Asunto(s)
Calcitriol/farmacología , Citocromo P-450 CYP3A/metabolismo , Osteoblastos/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Receptores X Retinoide/metabolismo , Sirtuina 1/metabolismo , Acetilación/efectos de los fármacos , Animales , Calcitriol/metabolismo , Carbazoles/farmacología , Línea Celular Tumoral , Citocromo P-450 CYP3A/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mutación , Osteoblastos/citología , Osteoblastos/metabolismo , Unión Proteica , Ratas , Receptores de Calcitriol/genética , Receptores X Retinoide/genética , Transducción de Señal , Sirtuina 1/genética , Transcripción Genética , Elemento de Respuesta a la Vitamina D
19.
Vitam Horm ; 100: 165-230, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26827953

RESUMEN

1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.


Asunto(s)
Glucuronidasa/metabolismo , Vitamina D/análogos & derivados , Animales , Factor-23 de Crecimiento de Fibroblastos , Regulación de la Expresión Génica/fisiología , Glucuronidasa/genética , Humanos , Proteínas Klotho , Transducción de Señal/fisiología , Vitamina D/química , Vitamina D/farmacología
20.
FASEB J ; 29(9): 4023-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26071405

RESUMEN

To investigate vitamin D-related control of brain-expressed genes, candidate vitamin D responsive elements (VDREs) at -7/-10 kb in human tryptophan hydroxylase (TPH)2 were probed. Both VDREs bound the vitamin D receptor (VDR)-retinoid X receptor (RXR) complex and drove reporter gene transcription in response to 1,25-dihydroxyvitamin D3 (1,25D). Brain TPH2 mRNA, encoding the rate-limiting enzyme in serotonin synthesis, was induced 2.2-fold by 10 nM 1,25D in human U87 glioblastoma cells and 47.8-fold in rat serotonergic RN46A-B14 cells. 1,25D regulation of leptin (Lep), encoding a serotoninlike satiety factor, was also examined. In mouse adipocytes, 1,25D repressed leptin mRNA levels by at least 84%, whereas 1,25D induced leptin mRNA 15.1-fold in human glioblastoma cells. Chromatin immunoprecipitation sequencing analysis of the mouse Lep gene in response to 1,25D revealed a cluster of regulatory sites (cis-regulatory module; CRM) at -28 kb that 1,25D-dependently docked VDR, RXR, C/EBPß, and RUNX2. This CRM harbored 3 VDREs and single C/EBPß and RUNX2 sites. Therefore, the expression of human TPH2 and mouse Lep are governed by 1,25D, potentially via respective VDREs located at -7/-10 kb and -28 kb. These results imply that vitamin D affects brain serotonin concentrations, which may be relevant to psychiatric disorders, such as autism, and may control leptin levels and affect eating behavior.


Asunto(s)
Conducta Animal/efectos de los fármacos , Calcitriol/farmacología , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Leptina/biosíntesis , Triptófano Hidroxilasa/biosíntesis , Células 3T3-L1 , Animales , Trastorno Autístico/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , ARN Mensajero/biosíntesis , Elementos de Respuesta/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...