Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
JAMA Netw Open ; 7(3): e244170, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38546643

RESUMEN

Importance: Determining the impact of germline cancer-predisposition variants (CPVs) on outcomes could inform novel approaches to testing and treating children with rhabdomyosarcoma. Objective: To assess whether CPVs are associated with outcome among children with rhabdomyosarcoma. Design, Setting, and Participants: In this cohort study, data were obtained for individuals, aged 0.01-23.23 years, newly diagnosed with rhabdomyosarcoma who were treated across 171 Children's Oncology Group sites from March 15, 1999, to December 8, 2017. Data analysis was performed from June 16, 2021, to May 15, 2023. Exposure: The presence of a CPV in 24 rhabdomyosarcoma-associated cancer-predisposition genes (CPGs) or an expanded set of 63 autosomal-dominant CPGs. Main Outcomes and Measures: Overall survival (OS) and event-free survival (EFS) were the main outcomes, using the Kaplan-Meier estimator to assess survival probabilities and the Cox proportional hazards regression model to adjust for clinical covariates. Analyses were stratified by tumor histology and the fusion status of PAX3 or PAX7 to the FOXO1 gene. Results: In this study of 580 individuals with rhabdomyosarcoma, the median patient age was 5.9 years (range, 0.01-23.23 years), and the male-to-female ratio was 1.5 to 1 (351 [60.5%] male). For patients with CPVs in rhabdomyosarcoma-associated CPGs, EFS was 48.4% compared with 57.8% for patients without a CPV (P = .10), and OS was 53.7% compared with 65.3% for patients without a CPV (P = .06). After adjustment, patients with CPVs had significantly worse OS (adjusted hazard ratio [AHR], 2.49 [95% CI, 1.39-4.45]; P = .002), and the outcomes were not better among patients with embryonal histology (EFS: AHR, 2.25 [95% CI, 1.25-4.06]; P = .007]; OS: AHR, 2.83 [95% CI, 1.47-5.43]; P = .002]). These associations were not due to the development of a second malignant neoplasm, and importantly, patients with fusion-negative rhabdomyosarcoma who harbored a CPV had similarly inferior outcomes as patients with fusion-positive rhabdomyosarcoma without CPVs (EFS: AHR, 1.35 [95% CI, 0.71-2.59]; P = .37; OS: AHR, 1.71 [95% CI, 0.84-3.47]; P = .14). There were no significant differences in outcome by CPV status of the 63 CPG set. Conclusions and Relevance: This cohort study identified a group of patients with embryonal rhabdomyosarcoma who had a particularly poor outcome. Other important clinical findings included that individuals with TP53 had poor outcomes independent of second malignant neoplasms and that patients with fusion-negative rhabdomyosarcoma who harbored a CPV had outcomes comparable to patients with fusion-positive rhabdomyosarcoma. These findings suggest that germline CPV testing may aid in clinical prognosis and should be considered in prospective risk-based clinical trials.


Asunto(s)
Neoplasias Primarias Secundarias , Rabdomiosarcoma , Niño , Humanos , Femenino , Masculino , Estudios de Cohortes , Estudios Prospectivos , Rabdomiosarcoma/genética , Rabdomiosarcoma/terapia , Pruebas Genéticas , Células Germinativas
2.
Blood Adv ; 7(16): 4563-4575, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37289514

RESUMEN

We recently reported that children with multiple birth defects have a significantly higher risk of childhood cancer. We performed whole-genome sequencing on a cohort of probands from this study with birth defects and cancer and their parents. Structural variant analysis identified a novel 5 kb de novo heterozygous inframe deletion overlapping the catalytic domain of USP9X in a female proband with multiple birth defects, developmental delay, and B-cell acute lymphoblastic leukemia (B-ALL). Her phenotype was consistent with female-restricted X-linked syndromic intellectual developmental disorder-99 (MRXS99F). Genotype-phenotype analysis including previously reported female probands (n = 42) demonstrated that MRXS99F probands with B-ALL (n = 3) clustered with subjects with loss-of-function (LoF) USP9X variants and multiple anomalies. The cumulative incidence of B-ALL among these female probands (7.1%) was significantly higher than an age- and sex-matched cohort (0.003%) from the Surveillance, Epidemiology, and End Results database (P < .0001, log-rank test). There are no reports of LoF variants in males. Males with hypomorphic missense variants have neurodevelopmental disorders without birth defects or leukemia risk. In contrast, in sporadic B-ALL, somatic LoF USP9X mutations occur in both males and females, and expression levels are comparable in leukemia samples from both sexes (P = .54), with the highest expressors being female patients with extra copies of the X-chromosome. Overall, we describe USP9X as a novel female-specific leukemia predisposition gene associated with multiple congenital, neurodevelopmental anomalies, and B-ALL risk. In contrast, USP9X serves as a tumor suppressor in sporadic pediatric B-ALL in both sexes, with low expression associated with poorer survival in patients with high-risk B-ALL.


Asunto(s)
Discapacidad Intelectual , Leucemia , Femenino , Humanos , Masculino , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , Mutación Missense , Fenotipo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
3.
Pediatr Blood Cancer ; : e30413, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37194615

RESUMEN

Rhabdomyosarcoma (RMS) is a well-described cancer in Li-Fraumeni syndrome, resulting from germline TP53 pathogenic variants (PVs). RMS exhibiting anaplasia (anRMS) are associated with a high rate of germline TP53 PVs. This study provides updated estimates of the prevalence of TP53 germline PVs in RMS (3%) and anRMS (11%) from a large cohort (n = 239) enrolled in five Children's Oncology Group (COG) clinical trials. Although the prevalence of germline TP53 PVs in patients with anRMS in this series is much lower than previously reported, this prevalence remains elevated. Germline evaluation for TP53 PVs should be strongly considered in patients with anRMS.

4.
Am J Med Genet A ; 191(6): 1546-1556, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36942736

RESUMEN

The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for rare protein-altering variants (PAVs). Exome sequencing data from the National Birth Defects Prevention Study on 54 child-parent trios, one child-mother duo, and 1513 parents of children with other birth defects were analyzed. Most (91%) cases were isolated BA. We performed (1) a trio-based analysis to identify rare de novo, homozygous, and compound heterozygous PAVs and (2) a case-control analysis using a sequence kernel-based association test to identify genes enriched with rare PAVs. While we replicated previous findings on PKD1L1, our results do not suggest that recurrent de novo PAVs play important roles in BA susceptibility. In fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, highlights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other gastrointestinal conditions and warrants additional study. Overall, our findings strengthen the hypothesis that the etiology of BA is complex.


Asunto(s)
Atresia Biliar , Humanos , Atresia Biliar/epidemiología , Atresia Biliar/genética , Atresia Biliar/diagnóstico , Exoma/genética , Homocigoto , Padres , Estudios de Casos y Controles , Proteínas de la Membrana/genética
5.
J Natl Cancer Inst ; 115(6): 733-741, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951526

RESUMEN

BACKGROUND: Relative to other pediatric cancers, survival for rhabdomyosarcoma (RMS) has not improved in recent decades, suggesting the need to enhance risk stratification. Therefore, we conducted a genome-wide association study for event-free survival (EFS) and overall survival (OS) to identify genetic variants associated with outcomes in individuals with RMS. METHODS: The study included 920 individuals with newly diagnosed RMS who were enrolled in Children's Oncology Group protocols. To assess the association of each single nucleotide polymorphism (SNP) with EFS and OS, we estimated hazard ratios (HRs) and 95% confidence intervals (CIs) using multivariable Cox proportional hazards models, adjusted for clinical covariates. All statistical tests were two sided. We also performed stratified analyses by histological subtype (alveolar and embryonal RMS) and carried out sensitivity analyses of statistically significant SNPs by PAX3/7-FOXO1 fusion status and genetic ancestry group. RESULTS: We identified that rs17321084 was associated with worse EFS (HR = 2.01, 95% CI = 1.59 to 2.53, P = 5.39 × 10-9) and rs10094840 was associated with worse OS (HR = 1.84, 95% CI = 1.48 to 2.27, P = 2.13 × 10-8). Using publicly available data, we found that rs17321084 lies in a binding region for transcription factors GATA2 and GATA3, and rs10094840 is associated with SPAG1 and RNF19A expression. We also identified that CTNNA3 rs2135732 (HR = 3.75, 95% CI = 2.34 to 5.99, P = 3.54 × 10-8) and MED31 rs74504320 (HR = 3.21, 95% CI = 2.12 to 4.86, P = 3.60 × 10-8) were associated with worse OS among individuals with alveolar RMS. CONCLUSIONS: We demonstrated that common germline variants are associated with EFS and OS among individuals with RMS. Additional replication and investigation of these SNP effects may further support their consideration in risk stratification protocols.


Asunto(s)
Rabdomiosarcoma Alveolar , Rabdomiosarcoma , Niño , Humanos , Estudio de Asociación del Genoma Completo , Rabdomiosarcoma/genética , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/patología , Rabdomiosarcoma Alveolar/genética , Modelos de Riesgos Proporcionales , Células Germinativas/patología , Ubiquitina-Proteína Ligasas , Complejo Mediador/genética
6.
J Agric Food Chem ; 70(43): 14084-14095, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36279293

RESUMEN

Adulteration and mislabeling of honey to mask its true origin have become a global concern. Pollen microscopy, the current gold standard for identifying honey's geographical and plant origins, is laborious, requires extensive training, and fails to identify filtered honey and honey spiked with pollen from a more favorable plant to disguise its origins. We successfully isolated pollen-free DNA from filtered honey using three types of adsorbents: (i) anti-dsDNA antibodies coupled to magnetic microspheres; (ii) anion-exchange adsorbent; and (iii) ceramic hydroxyapatite. The internal transcribed spacer 2 region of the captured pollen-free DNA was polymerase chain reaction-amplified and subjected to next-generation sequencing. Using an in-house bioinformatics pipeline, initial experiments showed that anion exchange had the greatest capacity to capture trace pollen-free DNA, and it was successfully applied to isolate DNA from five honey samples. Enrichment of trace pollen-free DNA from filtered honey samples opens a new approach for identifying the true origins of honey.


Asunto(s)
Miel , Miel/análisis , Polen/genética , Código de Barras del ADN Taxonómico , ADN
7.
Hum Mutat ; 43(12): 2033-2053, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054313

RESUMEN

Xia-Gibbs syndrome (XGS; MIM# 615829) is a rare mendelian disorder characterized by Development Delay (DD), intellectual disability (ID), and hypotonia. Individuals with XGS typically harbor de novo protein-truncating mutations in the AT-Hook DNA binding motif containing 1 (AHDC1) gene, although some missense mutations can also cause XGS. Large de novo heterozygous deletions that encompass the AHDC1 gene have also been ascribed as diagnostic for the disorder, without substantial evidence to support their pathogenicity. We analyzed 19 individuals with large contiguous deletions involving AHDC1, along with other genes. One individual bore the smallest known contiguous AHDC1 deletion (∼350 Kb), encompassing eight other genes within chr1p36.11 (Feline Gardner-Rasheed, IFI6, FAM76A, STX12, PPP1R8, THEMIS2, RPA2, SMPDL3B) and terminating within the first intron of AHDC1. The breakpoint junctions and phase of the deletion were identified using both short and long read sequencing (Oxford Nanopore). Quantification of RNA expression patterns in whole blood revealed that AHDC1 exhibited a mono-allelic expression pattern with no deficiency in overall AHDC1 expression levels, in contrast to the other deleted genes, which exhibited a 50% reduction in mRNA expression. These results suggest that AHDC1 expression in this individual is compensated by a novel regulatory mechanism and advances understanding of mutational and regulatory mechanisms in neurodevelopmental disorders.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Humanos , Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Endorribonucleasas , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Fosfoproteínas Fosfatasas , Proteínas Qa-SNARE , Proteínas de Unión al ARN , Esfingomielina Fosfodiesterasa
8.
Genet Med ; 23(12): 2404-2414, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34363016

RESUMEN

PURPOSE: Cardiovascular disease (CVD) is the leading cause of death in adults in the United States, yet the benefits of genetic testing are not universally accepted. METHODS: We developed the "HeartCare" panel of genes associated with CVD, evaluating high-penetrance Mendelian conditions, coronary artery disease (CAD) polygenic risk, LPA gene polymorphisms, and specific pharmacogenetic (PGx) variants. We enrolled 709 individuals from cardiology clinics at Baylor College of Medicine, and samples were analyzed in a CAP/CLIA-certified laboratory. Results were returned to the ordering physician and uploaded to the electronic medical record. RESULTS: Notably, 32% of patients had a genetic finding with clinical management implications, even after excluding PGx results, including 9% who were molecularly diagnosed with a Mendelian condition. Among surveyed physicians, 84% reported medical management changes based on these results, including specialist referrals, cardiac tests, and medication changes. LPA polymorphisms and high polygenic risk of CAD were found in 20% and 9% of patients, respectively, leading to diet, lifestyle, and other changes. Warfarin and simvastatin pharmacogenetic variants were present in roughly half of the cohort. CONCLUSION: Our results support the use of genetic information in routine cardiovascular health management and provide a roadmap for accompanying research.


Asunto(s)
Cardiología , Enfermedades Cardiovasculares , Adulto , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Pruebas Genéticas , Humanos , Farmacogenética/métodos , Pruebas de Farmacogenómica , Estados Unidos
9.
Pediatr Diabetes ; 22(7): 960-968, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34387403

RESUMEN

OBJECTIVE: Commercial gene panels identify pathogenic variants in as low as 27% of patients suspected to have MODY, suggesting the role of yet unidentified pathogenic variants. We sought to identify novel gene variants associated with MODY. RESEARCH DESIGN AND METHODS: We recruited 10 children with a clinical suspicion of MODY but non-diagnostic commercial MODY gene panels. We performed exome sequencing (ES) in them and their parents. RESULTS: Mean age at diabetes diagnosis was 10 (± 3.8) years. Six were females; 4 were non-Hispanic white, 5 Hispanic, and 1 Asian. Our variant prioritization analysis identified a pathogenic, de novo variant in INS (c.94G > A, p.Gly32Ser), confirmed by Sanger sequencing, in a proband who was previously diagnosed with "autoantibody-negative type 1 diabetes (T1D)" at 3 y/o. This rare variant, absent in the general population (gnomAD database), has been reported previously in neonatal diabetes. We also identified a frameshift deletion (c.2650delC, p.Gln884AsnfsTer57) in RFX6 in a child with a previous diagnosis of "autoantibody-negative T1D" at 12 y/o. The variant was inherited from the mother, who was diagnosed with "thin type 2 diabetes" at 25 y/o. Heterozygous protein-truncating variants in RFX6 gene have been recently reported in individuals with MODY. CONCLUSIONS: We diagnosed two patients with MODY using ES in children initially classified as "T1D". One has a likely pathogenic novel gene variant not previously associated with MODY. We demonstrate the clinical utility of ES in patients with clinical suspicion of MODY.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Secuenciación del Exoma , Adolescente , Autoanticuerpos/sangre , Niño , Diabetes Mellitus Tipo 1 , Diagnóstico Diferencial , Femenino , Mutación del Sistema de Lectura/genética , Variación Genética , Humanos , Islotes Pancreáticos/inmunología , Masculino , Mutación Missense/genética , Linaje
10.
Life Sci Alliance ; 4(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34301805

RESUMEN

Four organ transplant recipients from an organ donor diagnosed with anaplastic pleomorphic xanthoastrocytoma developed fatal malignancies for which the origin could not be confirmed by standard methods. We identified the somatic mutational profiles of the neoplasms using next-generation sequencing technologies and tracked the relationship between the different samples. The data were consistent with the presence of an aggressive clonal entity in the donor and the subsequent proliferation of descendent tumors in each recipient. Deleterious mutations in BRAF, PIK3CA, SDHC, DDR2, and FANCD2, and a chromosomal deletion spanning the CDKN2A/B genes, were shared between the recipients' lesions. In addition to demonstrating that DNA sequencing tracked a donor/recipient cancer transmission, this study established that the genetic profile of a donor tumor and its potential aggressive phenotype could have been determined before transplantation was considered. As the genetic correlates of tumor invasion and metastases become better known, adding genetic profiling by DNA sequencing to the data considered for transplant safety should be considered.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias del Sistema Nervioso Central/etiología , Neoplasias del Sistema Nervioso Central/patología , Trasplante de Órganos/efectos adversos , Análisis de Secuencia de ADN , Trasplantes/patología , Adolescente , Adulto , Biopsia , Neoplasias del Sistema Nervioso Central/mortalidad , Análisis Mutacional de ADN , Femenino , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Mutación , Trasplante de Órganos/métodos , Pronóstico , Análisis de Secuencia de ADN/métodos , Donantes de Tejidos , Receptores de Trasplantes , Secuenciación del Exoma , Adulto Joven
11.
Genet Med ; 23(10): 1838-1846, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34257418

RESUMEN

PURPOSE: Genomic medicine holds great promise for improving health care, but integrating searchable and actionable genetic data into electronic health records (EHRs) remains a challenge. Here we describe Neptune, a system for managing the interaction between a clinical laboratory and an EHR system during the clinical reporting process. METHODS: We developed Neptune and applied it to two clinical sequencing projects that required report customization, variant reanalysis, and EHR integration. RESULTS: Neptune has been applied for the generation and delivery of over 15,000 clinical genomic reports. This work spans two clinical tests based on targeted gene panels that contain 68 and 153 genes respectively. These projects demanded customizable clinical reports that contained a variety of genetic data types including single-nucleotide variants (SNVs), copy-number variants (CNVs), pharmacogenomics, and polygenic risk scores. Two variant reanalysis activities were also supported, highlighting this important workflow. CONCLUSION: Methods are needed for delivering structured genetic data to EHRs. This need extends beyond developing data formats to providing infrastructure that manages the reporting process itself. Neptune was successfully applied on two high-throughput clinical sequencing projects to build and deliver clinical reports to EHR systems. The software is open source and available at https://gitlab.com/bcm-hgsc/neptune .


Asunto(s)
Genómica , Neptuno , Registros Electrónicos de Salud , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Programas Informáticos
12.
Am J Hum Genet ; 108(7): 1239-1250, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34129815

RESUMEN

Despite release of the GRCh38 human reference genome more than seven years ago, GRCh37 remains more widely used by most research and clinical laboratories. To date, no study has quantified the impact of utilizing different reference assemblies for the identification of variants associated with rare and common diseases from large-scale exome-sequencing data. By calling variants on both the GRCh37 and GRCh38 references, we identified single-nucleotide variants (SNVs) and insertion-deletions (indels) in 1,572 exomes from participants with Mendelian diseases and their family members. We found that a total of 1.5% of SNVs and 2.0% of indels were discordant when different references were used. Notably, 76.6% of the discordant variants were clustered within discrete discordant reference patches (DISCREPs) comprising only 0.9% of loci targeted by exome sequencing. These DISCREPs were enriched for genomic elements including segmental duplications, fix patch sequences, and loci known to contain alternate haplotypes. We identified 206 genes significantly enriched for discordant variants, most of which were in DISCREPs and caused by multi-mapped reads on the reference assembly that lacked the variant call. Among these 206 genes, eight are implicated in known Mendelian diseases and 53 are associated with common phenotypes from genome-wide association studies. In addition, variant interpretations could also be influenced by the reference after lifting-over variant loci to another assembly. Overall, we identified genes and genomic loci affected by reference assembly choice, including genes associated with Mendelian disorders and complex human diseases that require careful evaluation in both research and clinical applications.


Asunto(s)
Exoma , Genoma Humano , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Enfermedades Genéticas Congénitas/genética , Humanos , Valores de Referencia
13.
Hum Mutat ; 42(5): 577-591, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33644933

RESUMEN

Xia-Gibbs syndrome (XGS) is a rare Mendelian disease typically caused by de novo stop-gain or frameshift mutations in the AT-hook DNA binding motif containing 1 (AHDC1) gene. Patients usually present in early infancy with hypotonia and developmental delay and later exhibit intellectual disability (ID). The overall presentation is variable, however, and the emerging clinical picture is still evolving. A detailed phenotypic analysis of 34 XGS individuals revealed five core phenotypes (delayed motor milestones, speech delay, low muscle tone, ID, and hypotonia) in more than 80% of individuals and an additional 12 features that occurred more variably. Seizures and scoliosis were more frequently associated with truncations that arise before the midpoint of the protein although the occurrence of most features could not be predicted by the mutation position. Transient expression of wild type and different patient truncated AHDC1 protein forms in human cell lines revealed abnormal patterns of nuclear localization including a diffuse distribution of a short truncated form and nucleolar aggregation in mid-protein truncated forms. Overall, both the occurrence of variable phenotypes and the different distribution of the expressed protein reflect the heterogeneity of this syndrome.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Alelos , Proteínas de Unión al ADN/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Fenotipo , Síndrome
14.
J Natl Cancer Inst ; 113(7): 875-883, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33372952

RESUMEN

BACKGROUND: Several cancer-susceptibility syndromes are reported to underlie pediatric rhabdomyosarcoma (RMS); however, to our knowledge there have been no systematic efforts to characterize the heterogeneous genetic etiologies of this often-fatal malignancy. METHODS: We performed exome-sequencing on germline DNA from 615 patients with newly diagnosed RMS consented through the Children's Oncology Group. We compared the prevalence of cancer predisposition variants in 63 autosomal-dominant cancer predisposition genes in these patients with population controls (n = 9963). All statistical tests were 2-sided. RESULTS: We identified germline cancer predisposition variants in 45 RMS patients (7.3%; all FOXO1 fusion negative) across 15 autosomal dominant genes, which was statistically significantly enriched compared with controls (1.4%, P = 1.3 × 10-22). Specifically, 73.3% of the predisposition variants were found in predisposition syndrome genes previously associated with pediatric RMS risk, such as Li-Fraumeni syndrome (TP53) and neurofibromatosis type I (NF1). Notably, 5 patients had well-described oncogenic missense variants in HRAS (p.G12V and p.G12S) associated with Costello syndrome. Also, genetic etiology differed with histology, as germline variants were more frequent in embryonal vs alveolar RMS patients (10.0% vs 3.0%, P = .02). Although patients with a cancer predisposition variant tended to be younger at diagnosis (P = 9.9 × 10-4), 40.0% of germline variants were identified in those older than 3 years of age, which is in contrast to current genetic testing recommendations based on early age at diagnosis. CONCLUSIONS: These findings demonstrate that genetic risk of RMS results from germline predisposition variants associated with a wide spectrum of cancer susceptibility syndromes. Germline genetic testing for children with RMS should be informed by RMS subtypes and not be limited to only young patients.


Asunto(s)
Síndrome de Li-Fraumeni , Rabdomiosarcoma , Niño , Predisposición Genética a la Enfermedad , Células Germinativas , Mutación de Línea Germinal , Humanos , Síndrome de Li-Fraumeni/genética , Rabdomiosarcoma/genética
15.
Mol Genet Genomic Med ; 8(10): e1439, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32767738

RESUMEN

BACKGROUND: Establishing a genetic diagnosis for individuals with intellectual disability (ID) benefits patients and their families as it may inform the prognosis, lead to appropriate therapy, and facilitate access to medical and supportive services. Exome sequencing has been successfully applied in a diagnostic setting, but most clinical exome referrals are pediatric patients, with many adults with ID lacking a comprehensive genetic evaluation. METHODS: Our unique recruitment strategy involved partnering with service and education providers for individuals with ID. We performed exome sequencing and analysis, and clinical variant interpretation for each recruited family. RESULTS: All five families enrolled in the study opted-in for the return of genetic results. In three out of five families exome sequencing analysis identified pathogenic or likely pathogenic variants in KANSL1, TUSC3, and MED13L genes. Families discussed the results and any potential medical follow-up in an appointment with a board certified clinical geneticist. CONCLUSION: Our study suggests high yield of exome sequencing as a diagnostic tool in adult patients with ID who have not undergone comprehensive sequencing-based genetic testing. Research studies including an option of return of results through a genetic clinic could help minimize the disparity in exome diagnostic testing between pediatric and adult patients with ID.


Asunto(s)
Secuenciación del Exoma/métodos , Pruebas Genéticas/métodos , Discapacidad Intelectual/genética , Selección de Paciente , Adulto , Femenino , Pruebas Genéticas/normas , Humanos , Vida Independiente , Discapacidad Intelectual/diagnóstico , Masculino , Complejo Mediador/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Sensibilidad y Especificidad , Proteínas Supresoras de Tumor/genética , Secuenciación del Exoma/normas
16.
Hum Mol Genet ; 29(3): 459-470, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943016

RESUMEN

Autism spectrum disorders are associated with some degree of developmental regression in up to 30% of all cases. Rarely, however, is the regression so extreme that a developmentally advanced young child would lose almost all ability to communicate and interact with her surroundings. We applied trio whole exome sequencing to a young woman who experienced extreme developmental regression starting at 2.5 years of age and identified compound heterozygous nonsense mutations in TMPRSS9, which encodes for polyserase-1, a transmembrane serine protease of poorly understood physiological function. Using semiquantitative polymerase chain reaction, we showed that Tmprss9 is expressed in various mouse tissues, including the brain. To study the consequences of TMPRSS9 loss of function on the mammalian brain, we generated a knockout mouse model. Through a battery of behavioral assays, we found that Tmprss9-/- mice showed decreased social interest and social recognition. We observed a borderline recognition memory deficit by novel object recognition in aged Tmprss9-/- female mice, but not in aged Tmprss9-/- male mice or younger adult Tmprss9-/- mice in both sexes. This study provides evidence to suggest that loss of function variants in TMPRSS9 are related to an autism spectrum disorder. However, the identification of more individuals with similar phenotypes and TMPRSS9 loss of function variants is required to establish a robust gene-disease relationship.


Asunto(s)
Trastornos de Ansiedad/patología , Trastorno del Espectro Autista/patología , Codón sin Sentido , Secuenciación del Exoma/métodos , Proteínas de la Membrana/metabolismo , Trastornos de la Memoria/patología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/fisiología , Adolescente , Adulto , Animales , Trastornos de Ansiedad/etiología , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Trastornos de la Memoria/etiología , Ratones , Ratones Noqueados , Actividad Motora , Fenotipo , Serina Endopeptidasas/genética
17.
Am J Hum Genet ; 105(5): 974-986, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31668702

RESUMEN

The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Bases de Datos Genéticas , Exoma/genética , Genómica/métodos , Humanos , Linaje , Fenotipo , Secuenciación del Exoma/métodos
18.
NPJ Genom Med ; 4: 19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452935

RESUMEN

Autism spectrum disorder (ASD) is a genetically heterogeneous condition, caused by a combination of rare de novo and inherited variants as well as common variants in at least several hundred genes. However, significantly larger sample sizes are needed to identify the complete set of genetic risk factors. We conducted a pilot study for SPARK (SPARKForAutism.org) of 457 families with ASD, all consented online. Whole exome sequencing (WES) and genotyping data were generated for each family using DNA from saliva. We identified variants in genes and loci that are clinically recognized causes or significant contributors to ASD in 10.4% of families without previous genetic findings. In addition, we identified variants that are possibly associated with ASD in an additional 3.4% of families. A meta-analysis using the TADA framework at a false discovery rate (FDR) of 0.1 provides statistical support for 26 ASD risk genes. While most of these genes are already known ASD risk genes, BRSK2 has the strongest statistical support and reaches genome-wide significance as a risk gene for ASD (p-value = 2.3e-06). Future studies leveraging the thousands of individuals with ASD who have enrolled in SPARK are likely to further clarify the genetic risk factors associated with ASD as well as allow accelerate ASD research that incorporates genetic etiology.

19.
Artículo en Inglés | MEDLINE | ID: mdl-30622101

RESUMEN

A 55-yr-old male with severe intellectual disability, behavioral problems, kyphoscoliosis, and dysmorphic features was referred for a genetic evaluation. Chromosomal microarray, RASopathy gene panel, mitochondrial sequencing, and fragile X testing were all negative. Subsequent whole-exome sequencing revealed a heterozygous, truncating variant in the AHDC1 gene, consistent with a diagnosis of Xia-Gibbs syndrome (XGS). Review of his clinical history showed many classic dysmorphic and clinical features of XGS, but no major health issues in adulthood other than intellectual disability. This individual is the oldest published XGS case to date, demonstrates the wide phenotypic spectrum of the disorder, and provides information on the condition's natural history. As more adults undergo genomic studies, we will continue to learn about the adult phenotypes of genetic conditions typically diagnosed in the pediatric setting.


Asunto(s)
Anomalías Múltiples/genética , Secuenciación del Exoma , Discapacidad Intelectual/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Persona de Mediana Edad
20.
Hepatology ; 70(3): 899-910, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30664273

RESUMEN

Biliary atresia (BA) is the most common cause of end-stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations-a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole-exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient-parent trios, from the National Institute of Diabetes and Digestive and Kidney Diseases-supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a prespecified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious biallelic variants in polycystic kidney disease 1 like 1 (PKD1L1), a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice, and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other noncholestatic diseases. Conclusion: WES identified biallelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN data set; the dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a biologically plausible, cholangiocyte-expressed candidate gene for the BASM syndrome.


Asunto(s)
Anomalías Múltiples/genética , Atresia Biliar/genética , Proteínas de la Membrana/genética , Enfermedades Renales Poliquísticas/genética , Bazo/anomalías , Anomalías Múltiples/patología , Atresia Biliar/patología , Niño , Bases de Datos Factuales , Femenino , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Renales Poliquísticas/patología , Estudios Retrospectivos , Síndrome , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...