Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultrasound Med Biol ; 49(1): 333-346, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280443

RESUMEN

Measurements of cardiac function such as left ventricular ejection fraction and myocardial strain are typically based on 2-D ultrasound imaging. The reliability of these measurements depends on the correct pose of the transducer such that the 2-D imaging plane properly aligns with the heart for standard measurement views and is thus dependent on the operator's skills. We propose a deep learning tool that suggests transducer movements to help users navigate toward the required standard views while scanning. The tool can simplify echocardiography for less experienced users and improve image standardization for more experienced users. Training data were generated by slicing 3-D ultrasound volumes, which permits simulation of the movements of a 2-D transducer. Neural networks were further trained to calculate the transducer position in a regression fashion. The method was validated and tested on 2-D images from several data sets representative of a prospective clinical setting. The method proposed the adequate transducer movement 75% of the time when averaging over all degrees of freedom and 95% of the time when considering transducer rotation solely. Real-time application examples illustrate the direct relation between the transducer movements, the ultrasound image and the provided feedback.


Asunto(s)
Ecocardiografía Tridimensional , Función Ventricular Izquierda , Volumen Sistólico , Reproducibilidad de los Resultados , Estudios Prospectivos , Ecocardiografía/métodos
2.
Eur Heart J Imaging Methods Pract ; 1(1): qyad012, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-39044792

RESUMEN

Aims: Apical foreshortening leads to an underestimation of left ventricular (LV) volumes and an overestimation of LV ejection fraction and global longitudinal strain. Real-time guiding using deep learning (DL) during echocardiography to reduce foreshortening could improve standardization and reduce variability. We aimed to study the effect of real-time DL guiding during echocardiography on measures of LV foreshortening and inter-observer variability. Methods and results: Patients (n = 88) in sinus rhythm referred for echocardiography without indication for contrast were included. All participants underwent three echocardiograms. The first two examinations were performed by sonographers, and the third by cardiologists. In Period 1, the sonographers were instructed to provide high-quality echocardiograms. In Period 2, the DL guiding was used by the second sonographer. One blinded expert measured LV length in all recordings. Tri-plane recordings by cardiologists were used as reference. Apical foreshortening was calculated at the end-diastole. Both sonographer groups significantly foreshortened the LV in Period 1 (mean foreshortening: Sonographer 1: 4 mm; Sonographer 2: 3 mm, both P < 0.001 vs. reference) and reduced foreshortening in Period 2 (2 and 0 mm, respectively. Period 1 vs. Period 2, P < 0.05). Sonographers using DL guiding did not foreshorten more than cardiologists (P ≥ 0.409). Real-time guiding did not improve intra-class correlation (ICC) [LV end-diastolic volume ICC, (95% confidence interval): DL guiding 0.87 (0.77-0.93) vs. no guiding 0.92 (0.88-0.95)]. Conclusion: Real-time guiding reduced foreshortening among experienced operators and has the potential to improve image standardization. Even though the effect on inter-operator variability was minimal among experienced users, real-time guiding may improve test-retest variability among less experienced users. Clinical trial registration: ClinicalTrials.gov, Identifier: NCT04580095.

3.
Eur Heart J Imaging Methods Pract ; 1(2): qyad040, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39045079

RESUMEN

Aims: Impaired standardization of echocardiograms may increase inter-operator variability. This study aimed to determine whether the real-time guidance of experienced sonographers by deep learning (DL) could improve the standardization of apical recordings. Methods and results: Patients (n = 88) in sinus rhythm referred for echocardiography were included. All participants underwent three examinations, whereof two were performed by sonographers and the third by cardiologists. In the first study period (Period 1), the sonographers were instructed to provide echocardiograms for the analyses of the left ventricular function. Subsequently, after brief training, the DL guidance was used in Period 2 by the sonographer performing the second examination. View standardization was quantified retrospectively by a human expert as the primary endpoint and the DL algorithm as the secondary endpoint. All recordings were scored in rotation and tilt both separately and combined and were categorized as standardized or non-standardized. Sonographers using DL guidance had more standardized acquisitions for the combination of rotation and tilt than sonographers without guidance in both periods (all P ≤ 0.05) when evaluated by the human expert and DL [except for the apical two-chamber (A2C) view by DL evaluation]. When rotation and tilt were analysed individually, A2C and apical long-axis rotation and A2C tilt were significantly improved, and the others were numerically improved when evaluated by the echocardiography expert. Furthermore, all, except for A2C rotation, were significantly improved when evaluated by DL (P < 0.01). Conclusion: Real-time guidance by DL improved the standardization of echocardiographic acquisitions by experienced sonographers. Future studies should evaluate the impact with respect to variability of measurements and when used by less-experienced operators. ClinicalTrialsgov Identifier: NCT04580095.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA