Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Ecol ; 15: 7, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25888023

RESUMEN

BACKGROUND: Spatio-temporal distribution patterns of species in response to natural and anthropogenic drivers provide insight into the ecological processes that determine community composition. We investigated determinants of ecological structure in a species assemblage of 4 closely related primate species of the family Cheirogaleidae (Microcebus berthae, Microcebus murinus, Cheirogaleus medius, Mirza coquereli) in western Madagascar by extensive line transect surveys across spatial and temporal heterogeneities with the specific goal of elucidating the mechanisms stabilizing competitive coexistence of the two mouse lemur species (Microcebus spp.). RESULTS: Interspecific competition between the mouse lemurs was indicated by negative spatial associations in degraded habitat and by habitat partitioning along anthropogenic disturbance gradients during dry seasons with resource scarcity. In non-degraded habitat, intraguild predator M. coquereli, but not C. medius, was negatively associated with M. murinus on the population level, whereas its regional distribution overlapped spatially with that of M. berthae. The species' interspecific distribution pattern across spatial and temporal heterogeneities corresponded to predictions for agent-mediated coexistence and thus confirmed M. coquereli's stabilizing impact on the coexistence of mouse lemurs. CONCLUSIONS: Interspecific interactions contribute to ecological structure in this cheirogaleid assemblage and determinants vary across spatio-temporal heterogeneities. Coexistence of Microcebus spp. is stabilized by an agent-mediated spatial storage effect: M. coquereli creates refuges from competition for M. berthae in intact habitat, whereas anthropogenic environments provide M. murinus with an escape from resource competition and intraguild predation. Species persistence in the assemblage therefore depends on the conservation of habitat content and context that stabilizing mechanisms rely on. Our large-scale population level approach did not allow for considering all potential functional and stochastic drivers of ecological structure, a key limitation that accounts for the large proportion of unexplained variance in our models.


Asunto(s)
Distribución Animal , Cheirogaleidae/fisiología , Ecosistema , Animales , Cheirogaleidae/clasificación , Conducta Competitiva , Madagascar , Modelos Biológicos , Dinámica Poblacional , Estaciones del Año , Análisis Espacio-Temporal
2.
Plant Physiol ; 154(4): 1697-709, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20959419

RESUMEN

To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.


Asunto(s)
Adaptación Fisiológica/genética , Perfilación de la Expresión Génica , Genes de Plantas , Populus/fisiología , Cloruro de Sodio/metabolismo , Estrés Fisiológico/genética , Cromatografía de Gases y Espectrometría de Masas , Técnicas de Inactivación de Genes , Cinética , Presión Osmótica , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Populus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...