Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 42(8): 1709-1720, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37283207

RESUMEN

Metformin, used to treat Type 2 diabetes, is the active ingredient of one of the most prescribed drugs in the world, with over 120 million yearly prescriptions globally. In wastewater-treatment plants (WWTPs), metformin can undergo microbial transformation to form the product guanylurea, which could have toxicological relevance in the environment. Surface water samples from 2018 to 2020 and sediment samples from 2020 were collected from six mixed-use watersheds in Quebec and Ontario, Canada, and analyzed to determine the metformin and guanylurea concentrations at each site. Metformin and guanylurea were present above their limits of quantification in 51.0% and 50.7% of all water samples and in 64% and 21% of all sediment samples, respectively. In surface water, guanylurea was often present at higher concentrations than metformin, while the inverse was true in sediment, with metformin frequently detected at higher concentrations than guanylurea. In addition, at all sites influenced solely by agriculture, concentrations of metformin and guanylurea were <1 µg/L in surface water, suggesting that agriculture is not a significant source of these compounds in the investigated watersheds. These data suggest that WWTPs and potentially septic system leaks are the most likely sources of the compounds in the environment. Guanylurea was detected at many of these sites above environmental concentrations of concern, where critical processes in fish may be affected. Due to the scarcity of available ecotoxicological data and the prominence of guanylurea across all sample sites, there is a need to perform more toxicological investigations of this transformation product and revisit regulations. The present study will help provide toxicologists with environmentally relevant concentration ranges in Canada. Environ Toxicol Chem 2023;42:1709-1720. © 2023 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Contaminantes Químicos del Agua , Animales , Metformina/química , Hipoglucemiantes/análisis , Quebec , Agua , Ontario , Contaminantes Químicos del Agua/análisis
2.
Environ Toxicol Chem ; 41(5): 1131-1143, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34407230

RESUMEN

Understanding the environmental fate, transport, and occurrence of pesticides and pharmaceuticals in aquatic environments is of utmost concern to regulators. Traditionally, monitoring of environmental contaminants in surface water has consisted of liquid chromatography-tandem mass spectrometry analyses for a set of targeted compounds in discrete samples. These targeted approaches are limited by the fact that they only provide information on compounds within a target list present at the time and location of sampling. To address these limitations, there has been considerable interest in suspect screening and nontargeted analysis (NTA), which allow for the detection of all ionizable compounds in the sample with the added benefit of data archiving for retrospective mining. Even though NTA can detect a large number of contaminants, discrete samples only provide a snapshot perspective of the chemical disposition of an aquatic environment at the time of sampling, potentially missing episodic events. We evaluated two types of passive chemical samplers for nontargeted analysis in mixed-use watersheds. Nontargeted data were processed using MS-DIAL to screen against our in-house library and public databases of more than 1300 compounds. The data showed that polar organic chemicals integrative samplers (POCIS) were able to capture the largest number of analytes with better reproducibility than organic compound-diffusive gradients in thin film (o-DGT), resulting from the greater amount of binding sorbent. We also showed that NTA combined with passive sampling gives a more representative picture of the contaminants present at a given site and enhances the ability to identify the nature of point and nonpoint pollution sources and ecotoxicological impacts. Environ Toxicol Chem 2022;41:1131-1143. © 2021 Her Majesty the Queen in Right of Canada Environmental Toxicology and Chemistry © 2021 SETAC. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Compuestos Orgánicos/análisis , Reproducibilidad de los Resultados , Estudios Retrospectivos , Contaminantes Químicos del Agua/análisis
3.
Anal Chem ; 93(41): 13870-13879, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618419

RESUMEN

Non-targeted analysis (NTA) workflows using mass spectrometry are gaining popularity in many disciplines, but universally accepted reporting standards are nonexistent. Current guidance addresses limited elements of NTA reporting-most notably, identification confidence-and is insufficient to ensure scientific transparency and reproducibility given the complexity of these methods. This lack of reporting standards hinders researchers' development of thorough study protocols and reviewers' ability to efficiently assess grant and manuscript submissions. To overcome these challenges, we developed the NTA Study Reporting Tool (SRT), an easy-to-use, interdisciplinary framework for comprehensive NTA methods and results reporting. Eleven NTA practitioners reviewed eight published articles covering environmental, food, and health-based exposomic applications with the SRT. Overall, our analysis demonstrated that the SRT provides a valid structure to guide study design and manuscript writing, as well as to evaluate NTA reporting quality. Scores self-assigned by authors fell within the range of peer-reviewer scores, indicating that SRT use for self-evaluation will strengthen reporting practices. The results also highlighted NTA reporting areas that need immediate improvement, such as analytical sequence and quality assurance/quality control information. Although scores intentionally do not correspond to data/results quality, widespread implementation of the SRT could improve study design and standardize reporting practices, ultimately leading to broader use and acceptance of NTA data.


Asunto(s)
Proyectos de Investigación , Espectrometría de Masas , Estándares de Referencia , Reproducibilidad de los Resultados
4.
Arch Environ Contam Toxicol ; 81(1): 107-122, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33944964

RESUMEN

Agricultural drainage ditches help remove excess water from fields and provide habitat for wildlife. Drainage ditch management, which includes various forms of vegetation clearing and sediment dredging, can variably affect the ecological function of these systems. To determine whether ditch conditions following dredging/vegetation clearing management affected the survival, growth, and development of embryos and tadpoles of northern leopard frogs (Lithobates pipiens), we conducted three field studies using in situ cages over 2 years. We measured nutrients, pesticides, and other water quality properties in vegetated/unmanaged (i.e., no clearing or dredging) and newly cleared/dredged (i.e., treeless, then dredged), clay-bottomed drainage ditches in a river basin in Eastern Ontario, Canada. Nutrients, atrazine, and total neonicotinoid concentrations were generally lower at the cleared/dredged sites, whereas glyphosate was at higher concentrations. In contrast, water-quality variables measured in situ, particularly temperature, dissolved oxygen, and turbidity, tended to be higher in the cleared/dredged sites. Total phosphorous and total organic carbon concentrations at all sites were above the recommended limits for amphibian assays. No significant differences were detected in the survival, hatching success, or development of embryos among the ditch management treatments, but premature hatching was observed at one vegetated/unmanaged site where high specific conductivity may have been formative. We found the cleared/dredged sites supported earlier tadpole growth and development, likely as a result of the higher water temperatures. Increased temperature may have offset other growth/development stressors, such as those related to water chemistry. However, the long-term consequences of these differences on amphibian populations requires further study.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Animales , Larva , Ontario , Rana pipiens , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
J Environ Manage ; 278(Pt 1): 111404, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33129079

RESUMEN

The presence of pharmaceuticals and personal care products (PPCPs) in biosolids applied to farmland is of concern due to their potential accumulation in the environment and the subsequent effects on humans. Thermo-alkaline hydrolysis (TAH) is a method used for greater stabilization of biosolids after anaerobic digestion. In this work, the effect of TAH on five selected PPCPs including fluoroquinolone antibiotics, ciprofloxacin (CIP), and ofloxacin (OFLX), and three commonly used antimicrobial agents, miconazole (MIC), triclosan (TCS) and triclocarban (TCC) was evaluated. At the onset, extraction and analytical methods were optimized for maximum simultaneous recovery and LC-MS quantification of the target PPCPs from both water and biosolids for improved accuracy. The compounds were detected in the range of 54 ± 3 to 6166 ± 532 ng/g in raw biosoilds collected from a local WWTP. Next, batch control adsorption experiments of the selected PPCPs were conducted in various sludges, which indicated about 89%-98% sorption of the PPCPs onto solid phase due to their high octanol-water coefficients. Subsequently, thermo-alkaline (pH 9.5, 75 °C, 45 min) hydrolysis (TAH) was conducted to determine the extent of degradation of these compounds in deionized (DI) water and biosolids due to treatment. The degradation of these compounds due to TAH ranged from 42% to 99% and 37%-41% in pure water and biosolids, respectively, potentially lowering their risk in the environment due to land application. A list of compounds for which the optimized analytical method potentially can be used for detection and quantification in environmental samples is provided in the supporting document.


Asunto(s)
Cosméticos , Preparaciones Farmacéuticas , Triclosán , Biosólidos , Humanos , Aguas del Alcantarillado
6.
J Environ Manage ; 269: 110815, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32561017

RESUMEN

In this study, the fate of several micropollutants (MPs) in wastewater due to coagulation using both fresh and recovered aluminum and iron coagulants was determined. 18 MPs from different groups such as antibiotics, food additives, and surfactants were selected and spiked into the primary influent collected from a local wastewater plant. The distribution of MPs in the recovered coagulant and treated effluent after coagulation was determined for both fresh and recycled coagulants. The distribution of MPs in wastewater and the removal during coagulation were compound specific; MPs with log Kow < 2.5 were predominantly present in the effluent after coagulation, while MPs with log Kow > 2.5 were sorbed on the coagulated sludge. The distribution ratio (Kd) of all the MPs (diclofenac, clarithromycin, etc.) with log Kow > 2.5 was determined along with their extent of accumulation in sludge due to the recycling of coagulants. Compounds such as sulfamethoxazole, erythromycin and sulfathiazole, showed low removal during coagulation. The tetracycline group of compounds showed possible chelation with iron and aluminum. Only <10% of the initially spiked MPs with log Kow > 2.5 was being recycled with the recovered coagulant, thus alleviating the concern of accumulation of the MPs during recycle of the coagulants.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Reciclaje , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
7.
Chemosphere ; 230: 416-423, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31112864

RESUMEN

Acesulfame potassium (ACE) is a widely used artificial sweetener that has consistently been detected in wastewater and surface waters. The high-valent iron-based green oxidant known as ferrate(VI) (potassium ferrate(VI); Fe(VI)) had low reactivity with ACE (i.e. 4 h (or 240 min) contact time removed only ∼ 67% ACE) at a molar ratio of 6.0 ([Fe(VI)]:[ACE]). Comparatively, it took 60 s (or 1 min) to remove ∼94% ACE when HCl (786 µM) was added to a mixture of Fe(VI)-ACE at the same molar ratio of 6.0 (or acid-activated Fe(VI)). Significantly, the final pH (i.e. 7.6-8.1) was similar for Fe(VI) and acid-activated Fe(VI). An empirical model using response surface methodology was developed that could describe reasonably well the removal efficiency of ACE. Inorganic constituents of wastewater (Cl-, Na+, Ca2+, and Mg2+) had no significant effect on the oxidation of ACE by acid-activated Fe(VI). The degradation efficiency of ACE decreased in the presence of 10 mg/L of natural organic matter (NOM) but remained unchanged at 5 mg NOM/L. Sulfamic acid as the oxidized product of ACE was identified by liquid chromatography high resolution mass spectrometry method. Reaction pathways include ring opening of ACE through hydrolytic transformation. Acid-activated Fe(VI) has advantage of rapid removal of ACE under mild alkaline conditions of wastewater treatment plants compared to other oxidation processes such as chlorination, ozonation, and light-based processes.


Asunto(s)
Compuestos de Hierro/química , Compuestos de Potasio/química , Tiazinas/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Propiedades de Superficie , Factores de Tiempo
8.
J AOAC Int ; 101(6): 1940-1947, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29784072

RESUMEN

Background: Neonicotinoids are among the most widely used insecticides. Recently, there has been concern associated with unintended adverse effects on honeybees and aquatic invertebrates at low parts-per-trillion levels. Objective: There is a need for LC-MS/MS methods that are capable of high-throughput measurements of the most widely used neonicotinoids at environmentally relevant concentrations in surface water. Methods: This method allows for quantitation of acetamiprid, clothianidin, imidacloprid, dinotefuran, nitenpyram, thiacloprid, and thiamethoxam in surface water. Deuterated internal standards are added to 20 mL environmental samples, which are concentrated by lyophilisation and reconstituted with methanol followed by acetonitrile. Results: A large variation of mean recovery efficiencies across five different surface water sampling sites within this study was observed, ranging from 45 to 74%. This demonstrated the need for labelled internal standards to compensate for these differences. Atmospheric pressure chemical ionization (APCI) performed better than electrospray ionization (ESI) with limited matrix suppression, achieving 71-110% of the laboratory fortified blank signal. Neonicotinoids were resolved on a C18 column using a 5 min LC method, in which MQL ranged between 0.93 and 4.88 ng/L. Conclusions: This method enables cost effective, accurate, and reproducible monitoring of these pesticides in the aquatic environment. Highlights: Lyophilization is used for high throughput concentration of neonicotinoids in surface water. Variations in matrix effects between samples was greatly reduced by using APCI compared with ESI. Clothianidin and thiamethoxam were detected in all samples with levels ranging from below method quantitation limit to 65 ng/L.


Asunto(s)
Cromatografía Liquida/métodos , Contaminación Ambiental/análisis , Insecticidas/análisis , Neonicotinoides/análisis , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Agua/química , Liofilización
9.
Environ Sci Pollut Res Int ; 25(16): 16236-16245, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29594886

RESUMEN

Antibiotics are frequently introduced into agricultural soils with the application of sewage sludge or farm organic fertilizers. Repeated exposure of soils to a pollutant can enrich for microbial populations that metabolize the chemical, reducing its environmental persistence. In London, Canada, soils from a long-term field experiment have received different concentrations of antibiotics annually for several years. The purpose of the present study was to assess the bioavailability of sulfamethazine, erythromycin, or ciprofloxacin through aqueous extractions with borax or EDTA solutions and their biodegradation following different soil exposure scenarios. Control soils and soils treated annually in the field with 10 mg antibiotics per kg were sampled, supplemented in the laboratory with radiolabeled antibiotic either added directly or carried in dairy manure. Sulfamethazine and erythromycin were initially more bioavailable than ciprofloxacin, with aqueous extractabilities representing 60, 36, and 8%, respectively. Sulfamethazine and erythromycin were degraded in soils, with a larger fraction mineralized in the long-term exposed soil (20 and 65%, respectively) than in control soil (0.4 and 3%, respectively) after 7 days of incubation. In contrast, ciprofloxacin was not mineralized neither in control nor long-term exposed soils. The mineralized fractions were similar for antibiotics added directly to soil or carried in dairy manure.


Asunto(s)
Antibacterianos/química , Ciprofloxacina/química , Eritromicina/química , Fertilizantes/análisis , Sulfametazina/química , Agricultura , Biodegradación Ambiental , Canadá , Londres , Estiércol , Aguas del Alcantarillado , Suelo
10.
Sci Total Environ ; 587-588: 214-222, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242221

RESUMEN

In many jurisdictions sludge recovered from the sewage treatment process is a valued fertilizer for crop production. Pre-treatment of sewage sludge prior to land application offers the potential to abate enteric microorganisms that carry genes conferring resistance to antibiotics. Pre-treatment practices that accomplish this should have the desirable effect of reducing the risk of contamination of crops or adjacent water with antibiotic resistance genes carried in these materials. In the present study, we obtained municipal sludge that had been subjected to one of five treatments. There were, anaerobic-digestion or aerobic-digestion, in both instances with and without dewatering; and heat-treatment and pelletization. Each of the five types of biosolids was applied to an agricultural field at commercial rates, following which lettuce, carrots and radishes were planted. Based on qPCR, the estimated antibiotic gene loading rates were comparable with each of the five biosolids. However, the gene abundance in soil following application of the pelletized biosolids was anomalously lower than expected. Following application, the abundance of antibiotic resistance genes decreased in a generally coherent fashion, except sul1 which increased in abundance during the growing season in the soil fertilized with pelletized biosolids. Based on qPCR and high throughput sequencing evidence for transfer of antibiotic resistance genes from the biosolids to the vegetables at harvest was weak. Clostridia were more abundant in soils receiving any of the biosolids except the pelletized. Overall, the behavior of antibiotic resistance genes in soils receiving aerobically or anaerobically-digested biosolids was consistent and coherent with previous studies. However, dynamics of antibiotic resistance genes in soils receiving the heat treated pelletized biosolids were very different, and the underlying mechanisms merit investigation.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Farmacorresistencia Microbiana/genética , Microbiología del Suelo , Eliminación de Residuos Líquidos/métodos , Agricultura/métodos , Producción de Cultivos/estadística & datos numéricos , Monitoreo del Ambiente , Fertilizantes , Suelo , Contaminantes del Suelo/análisis
11.
Anal Chem ; 89(5): 2747-2754, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28194977

RESUMEN

Advances in high-resolution mass spectrometers have allowed for the development of nontargeted screening methods, where data sets can be archived and retrospectively mined as new environmental contaminants are identified. We have developed a spectral counting approach to calculate the selectivities of LC-MS acquisition modes taking mass accuracy, sample matrix, and the analyte properties into account. The selectivities of high-resolution MS (HRMS) alone or in combination with all-ion-fragmentation (AIF), data-independent-acquisition (DIA), and data-dependent-acquisition (DDA) modes, performed on a Q-Exactive Orbitrap were compared by retrospectively screening surface water samples for 95 pharmaceuticals. Samples were reanalyzed using targeted LC-MS/MS to confirm the accuracy of each acquisition method and to quantitate the 29 putatively detected drugs. LC-HRMS provided the lowest calculated selectivities and accordingly produced the highest number of false positives (6). In contrast, DDA provided the highest selectivities, yielding only one false positive; however, it was bias toward the most intense signals resulting in the detection of only 10 compounds. AIF had lower selectivities than traditional LC-MS/MS, produced one false positive and did not detect 6 confirmed compounds. Because of the high-quality archived data, DIA selectivities were better than traditional LC-MS/MS, showed no bias toward the most intense signals, achieved low limits of detection, and confidently detected the greatest number of pharmaceuticals (22) with only one false positive. This spectral counting method can be used across different instrument platforms or samples and provides a robust and empirical estimation of selectivities to give more confident detection of trace analytes.

12.
Sci Total Environ ; 581-582: 32-39, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28076772

RESUMEN

Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so.


Asunto(s)
Farmacorresistencia Microbiana/genética , Genes Bacterianos , Estiércol , Microbiología del Suelo , Verduras , Animales , Industria Lechera , Fertilizantes , Suelo
13.
Can J Microbiol ; 62(7): 600-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27277701

RESUMEN

Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -ß, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.


Asunto(s)
Productos Agrícolas , Farmacorresistencia Microbiana/genética , Fertilizantes , Plásmidos/genética , Aguas del Alcantarillado , Verduras , Antibacterianos/farmacología , Humanos , Ontario , ARN Ribosómico 16S , Aguas del Alcantarillado/microbiología , Suelo/química , Microbiología del Suelo , Verduras/microbiología , Aguas Residuales
14.
Sci Total Environ ; 562: 136-144, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27096634

RESUMEN

The macrolide antibiotics erythromycin, clarithromycin and azithromycin are very important in human and animal medicine, and can be entrained onto agricultural ground through application of sewage sludge or manures. In the present study, a series of replicated field plots were left untreated or received up to five annual spring applications of a mixture of three drugs to achieve a nominal concentration for each of 10 or 0.1mgkg(-1) soil; the latter an environmentally relevant concentration. Soil samples were incubated in the laboratory, and supplemented with antibiotics to establish the dissipation kinetics of erythromycin and clarithromycin using radioisotope methods, and azithromycin using HPLC-MS/MS. All three drugs were dissipated significantly more rapidly in soils with a history of field exposure to 10mgkg(-1) macrolides, and erythromycin and clarithromycin were also degraded more rapidly in field soil exposed to 0.1mgkg(-1) macrolides. Rapid mineralization of (14)C-labelled erythromycin and clarithromycin are consistent with biodegradation. Analysis of field soils revealed no carryover of parent compound from year to year. Azithromycin transformation products were detected consistent with removal of the desosamine and cladinose moieties. Overall, these results have revealed that following several years of exposure to macrolide antibiotics these are amenable to accelerated degradation. The potential accelerated degradation of these drugs in soils amended with manure and sewage sludge should be investigated as this phenomenon would attenuate environmental exposure and selection pressure for clinically relevant resistance.


Asunto(s)
Antibacterianos/análisis , Monitoreo del Ambiente , Macrólidos/análisis , Contaminantes del Suelo/análisis , Agricultura/estadística & datos numéricos , Azitromicina/análisis , Claritromicina/análisis , Contaminación Ambiental/estadística & datos numéricos , Eritromicina/análisis , Suelo , Eliminación de Residuos Líquidos
15.
Sci Total Environ ; 512-513: 480-488, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25644844

RESUMEN

In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with (14)C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules.


Asunto(s)
Contaminantes del Suelo/análisis , Eliminación de Residuos Líquidos/métodos , Agricultura , Carbamazepina/análisis , Carbanilidas/análisis , Desecación , Monitoreo del Ambiente , Naproxeno/análisis , Triclosán/análisis
16.
Appl Environ Microbiol ; 80(22): 6898-907, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25172864

RESUMEN

The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Fertilizantes/microbiología , Aguas del Alcantarillado/microbiología , Microbiología del Suelo , Verduras/microbiología , Agricultura , Anaerobiosis , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Heces/microbiología , Fertilizantes/efectos adversos , Humanos
17.
Appl Environ Microbiol ; 80(10): 3258-65, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24632259

RESUMEN

Animal manures recycled onto crop production land carry antibiotic-resistant bacteria. The present study evaluated the fate in soil of selected genes associated with antibiotic resistance or genetic mobility in field plots cropped to vegetables and managed according to normal farming practice. Referenced to unmanured soil, fertilization with swine or dairy manure increased the relative abundance of the gene targets sul1, erm(B), str(B), int1, and IncW repA. Following manure application in the spring of 2012, gene copy number decayed exponentially, reaching background levels by the fall of 2012. In contrast, gene copy number following manure application in the fall of 2012 or spring of 2013 increased significantly in the weeks following application and then declined. In both cases, the relative abundance of gene copy numbers had not returned to background levels by the fall of 2013. Overall, these results suggest that under conditions characteristic of agriculture in a humid continental climate, a 1-year period following a commercial application of raw manure is sufficient to ensure that an additional soil burden of antibiotic resistance genes approaches background. The relative abundance of several gene targets exceeded background during the growing season following a spring application or an application done the previous fall. Results from the present study reinforce the advisability of treating manure prior to use in crop production systems.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Proteínas Bacterianas/genética , Productos Agrícolas/microbiología , Estiércol/microbiología , Verduras/microbiología , Animales , Bacterias/química , Bacterias/clasificación , Productos Agrícolas/crecimiento & desarrollo , Farmacorresistencia Bacteriana , Fertilizantes/análisis , Dosificación de Gen , Cinética , Ganado , Estiércol/análisis , Estaciones del Año , Microbiología del Suelo , Porcinos , Verduras/crecimiento & desarrollo
18.
Appl Environ Microbiol ; 79(18): 5701-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23851089

RESUMEN

Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.


Asunto(s)
Agricultura/métodos , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Farmacorresistencia Bacteriana , Estiércol/microbiología , Microbiología del Suelo , Verduras/microbiología , Animales , Carga Bacteriana , Bovinos , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Genes Bacterianos , Humanos , Reacción en Cadena de la Polimerasa , Porcinos
19.
J Environ Qual ; 42(1): 173-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673752

RESUMEN

The World Health Organization has identified antibiotic resistance as one of the top three threats to global health. There is concern that the use of antibiotics as growth promoting agents in livestock production contributes to the increasingly problematic development of antibiotic resistance. Many antibiotics are excreted at high rates, and the land application of animal manures represents a significant source of environmental exposure to these agents. To evaluate the long-term effects of antibiotic exposure on soil microbial populations, a series of field plots were established in 1999 that have since received annual applications of a mixture of sulfamethazine (SMZ), tylosin (TYL), and chlortetracycline (CTC). During the first 6 yr (1999-2004) soils were treated at concentrations of 0, 0.01 0.1, and 1.0 mg kg soil, in subsequent years at concentrations of 0, 0.1, 1.0, and 10 mg kg soil. The lower end of this concentration range is within that which would result from an annual application of manure from medicated swine. Following ten annual applications, the fate of the drugs in the soil was evaluated. Residues of SMZ and TYL, but not CTC were removed much more rapidly in soil with a history of exposure to 10 mg/kg drugs than in untreated control soil. Residues of C-SMZ were rapidly and thoroughly mineralized to CO in the historically treated soils, but not in the untreated soil. A SMZ-degrading sp. was isolated from the treated soil. Overall, these results indicate that soil bacteria adapt to long-term exposure to some veterinary antibiotics resulting in sharply reduced persistence. Accelerated biodegradation of antibiotics in matrices exposed to agricultural, wastewater, or pharmaceutical manufacturing effluents would attenuate environmental exposure to antibiotics, and merits investigation in the context of assessing potential risks of antibiotic resistance development in environmental matrices.


Asunto(s)
Suelo , Sulfametazina , Animales , Antibacterianos/química , Estiércol/microbiología , Contaminantes del Suelo , Sulfametazina/metabolismo , Tilosina
20.
Sci Total Environ ; 439: 136-40, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23063919

RESUMEN

The widely used antihistamine diphenhydramine is present in municipal biosolids, and is detected in runoff from agricultural land fertilized with biosolids. In the present study the kinetics and major pathways of diphenhydramine dissipation in a loam, sandy loam, and clay loam soil were determined in laboratory incubations. The time to dissipate 50% (DT(50)) of (14)C-diphenhydramine residues at 30 °C ranged from 88 ± 28 days in the clay loam to 335 ± 145 days in the loam soil. Mineralization of (14)C was insignificant, and diphenhydramine-N-oxide was the only detected extractable transformation product elucidated by radioisotope and HPLC-MS methods. There were no significant effects of municipal biosolids on the kinetics or pathways of removal. Overall, diphenhydramine is quite persistent in soils, and formation of non-extractable soil-bound residues is the major mechanism of diphenhydramine dissipation.


Asunto(s)
Agricultura , Difenhidramina/análisis , Monitoreo del Ambiente , Antagonistas de los Receptores Histamínicos H1/análisis , Contaminantes del Suelo/análisis , Suelo , Canadá , Cromatografía Líquida de Alta Presión , Restauración y Remediación Ambiental , Cinética , Espectrometría de Masas , Suelo/análisis , Suelo/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...