Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Med Mushrooms ; 26(7): 67-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884264

RESUMEN

Mushrooms have been used as medicine by humans for more than 5000 years. They have had a successful role in treating immune deficiencies. Nowadays, some extracts and compounds obtained from medicinal mushrooms have increased a great prospect of treating many disorders by having a great role in modulation of immune system, cancer inhibiting, cardio-vascular health, antiviral, antibacterial, antioxidant and protective effects against hepatitis and diabetes. In this study, we evaluated the antioxidant effect of methanol and hot water extract of the Trametes gibbosa (Pers.) Fr. mushroom and hepatoprotective effect of the extract with the most radical scavenging potency. To assess the antioxidant properties of different extracts of the mushroom, DPPH method was used. For assessing the hepatoprotective properties, a seven-day experiment was designed, and liver toxicity was induced by carbon tetrachloride [intraperitoneal (ip) for 7 consecutive days, 0.5 mL/kg body weight (BW)]. Rats were simultaneously fed with aqueous extract of the mushroom with the dose of 250, 500, and 1000 mg/kg BW and silymarin (100 mg/kg BW) as positive control. At the end of the experiment, blood serums of the rats were collected for quantification of major liver factors (e.g., aspartate aminotransferase, alanine aminotransferase, alanine phosphatase, bilirubin, etc.). Tissue samples were obtained for pathological examination. Based on the results, the aqueous extract showed more potent radical scavenging activity (half-maximal inhibitory concentration = 414.33 µg/mL, compared with 936.92 µg/mL for methanolic extract). Indeed, hepatoprotective properties of the aqueous extract of the mushroom (500 and 1000 mg/kg BW) were comparable with those of silymarin and even showed superior protective effects in histopathological examination. It seems that with further complementary studies, T. gibbosa could be considered a potential candidate for hepatoprotection.


Asunto(s)
Antioxidantes , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Sustancias Protectoras , Trametes , Animales , Ratas , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Masculino , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Antioxidantes/farmacología , Antioxidantes/química , Trametes/química , Hígado/efectos de los fármacos , Hígado/patología , Ratas Wistar , Silimarina/farmacología
2.
Eur J Pharmacol ; 978: 176776, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38936451

RESUMEN

The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug. According to current research, Liraglutide likely ameliorates cognitive impairment in neurodegenerative conditions and substance use disorders. Hence, the purpose of this study is examining the effect of Liraglutide on α-PVP-induced spatial learning and memory problems due to brain mitochondrial dysfunction. Wistar rats (8 in each group) received α-PVP (20 mg/kg/d for 10 consecutive days, intraperitoneally (I.P.)). Then, Liraglutide was administered at 47 and 94 µg/kg/d, I.P., for 4 weeks following the α-PVP administration. The Morris Water Maze (MWM) task evaluated spatial learning and memory 24 h after Liraglutide treatment. Bedside, brain mitochondrial activity parameters, including reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), cytochrome c release, mitochondrial outer membrane damage and swelling, and brain ADP/ATP ratio, were studied. Our results showed that Liraglutide ameliorated α-PVP-induced spatial learning and memory impairments through alleviating brain mitochondrial dysfunction (which is indicated by increasing ROS formation, collapsed MMP, mitochondrial outer membrane damage, cytochrome c release, mitochondrial swelling, and increased brain ADP/ATP ratio). This study could be used as a starting point for future studies about the possible role of Liraglutide in ameliorating mitochondrial dysfunction leading to substance use disorder- induced cognitive impairment.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Liraglutida , Mitocondrias , Pirrolidinas , Ratas Wistar , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Ratas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inducido químicamente , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA