Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831129

RESUMEN

Structures of molecular crystals are identified using scattering techniques because we cannot see inside them. Micrometre-sized colloidal particles enable the real-time observation of crystallization with optical microscopy, but in practice this is still hampered by a lack of 'X-ray vision'. Here we introduce a system of index-matched fluorescently labelled colloidal particles and demonstrate the robust formation of ionic crystals in aqueous solution, with structures that can be controlled by size ratio and salt concentration. Full three-dimensional coordinates of particles are distinguished through in situ confocal microscopy, and the crystal structures are identified via comparison of their simulated scattering pattern with known atomic arrangements. Finally, we leverage our ability to look inside colloidal crystals to observe the motion of defects and crystal melting in time and space and to reveal the origin of crystal twinning. Using this platform, the path to real-time analysis of ionic colloidal crystallization is now 'crystal clear'.

2.
Nat Rev Chem ; 8(6): 433-453, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740891

RESUMEN

Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs.

3.
Chem Mater ; 36(8): 3970-3975, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38681086

RESUMEN

Driven systems composed largely of droplets and fuel make up a significant portion of microbiological function. At the micrometer scale, fully synthetic systems that perform an array of tasks within a uniform bulk are much more rare. In this work, we introduce an innovative design for solid-in-oil composite microdroplets. These microdroplets are engineered to nucleate an internal phase, undergo inflation, and eventually burst, all powered by a steady and uniform energy input. We show that by altering the background input, volumetric change and burst time can be tuned. When the inflated droplets release the inner contents, colloidal particles are shown to transiently attract to the release point. Lastly, we show that the system has the ability to perform multiple inflation-burst cycles. We anticipate that our conceptual design of internally powered microdroplets will catalyze further research into autonomous systems capable of intricate communication as well as inspire the development of advanced, responsive materials.

4.
Soft Matter ; 19(38): 7334-7342, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37727916

RESUMEN

The ability of active matter to assemble into reconfigurable nonequilibrium structures has drawn considerable interest in recent years. We investigate how active fluids respond to spatial light patterns through simulations and experiments on light-activated self-propelled colloidal particles. We examine the processes of inverse templated assembly, which involves creating a region without active particles through a bright pattern, and templated assembly, which promotes the formation of dense particle regions through a dark pattern. We identify scaling relations for the characteristic times for both processes that quantify the interplay between the dimension of the applied pattern and the intrinsic properties of the active fluid. We also explore the assembly mechanism and dynamics of large clusters and show how assembly and inverse assembly can be combined to create any arbitrarily complex template. In addition to providing protocols for templated assembly via light patterning, our results demonstrate how the local packing fraction can be fine-tuned by modulation of the light intensity. The protocol so obtained exceeds the capabilities of conventional assembly strategies, in which packing fraction is dictated by thermodynamics, and opens the door to arbitrarily precise and programmable nonequilibrium assembly strategies in active matter.

5.
Soft Matter ; 19(19): 3414-3422, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37060129

RESUMEN

Patchy colloids promise the design and modelling of complex materials, but the realization of equilibrium patchy particle structures remains challenging. Here, we assemble pseudo-trivalent particles and elucidate their phase behaviour when confined to a plane. We observe the honeycomb phase, as well as more complex amorphous network and triangular phases. Structural analysis performed on the three condensed phases reveals their shared structural motifs. Using a combined experimental and simulation approach, we elucidate the energetics of these phases and construct the phase diagram of this system, using order parameters to determine the phase coexistence lines. Our results reveal the rich phase behaviour that a relatively simple patchy particle system can display, and open the door to a larger joined simulation and experimental exploration of the full patchy-particle phase space.

6.
Nat Commun ; 14(1): 1524, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934102

RESUMEN

Graphene has been under intense scientific interest because of its remarkable optical, mechanical and electronic properties. Its honeycomb structure makes it an archetypical two-dimensional material exhibiting a photonic and phononic band gap with topologically protected states. Here, we assemble colloidal graphene, the analogue of atomic graphene using pseudo-trivalent patchy particles, allowing particle-scale insight into crystal growth and defect dynamics. We directly observe the formation and healing of common defects, like grain boundaries and vacancies using confocal microscopy. We identify a pentagonal defect motif that is kinetically favoured in the early stages of growth, and acts as seed for more extended defects in the later stages. We determine the conformational energy of the crystal from the bond saturation and bond angle distortions, and follow its evolution through the energy landscape upon defect rearrangement and healing. These direct observations reveal that the origins of the most common defects lie in the early stages of graphene assembly, where pentagons are kinetically favoured over the equilibrium hexagons of the honeycomb lattice, subsequently stabilized during further growth. Our results open the door to the assembly of complex 2D colloidal materials and investigation of their dynamical, mechanical and optical properties.

7.
Biophys Rep (N Y) ; 2(3): 100069, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36425330

RESUMEN

Localized fluxes, production, and/or degradation coupled to limited diffusion are well known to result in stable spatial concentration gradients of biomolecules in the cell. In this study, we demonstrate that this also holds true for small ions, since we found that the close membrane apposition between the membrane of a phagosome and the surface of the cargo particle it encloses, together with localized membrane rupture, suffice for stable gradients of protons and iron cations within the lumen of the phagosome. Our data show that, in phagosomes containing hexapod-shaped silica colloid particles, the phagosomal membrane is ruptured at the positions of the tips of the rods, but not at other positions. This results in the confined leakage at these positions of protons and iron from the lumen of the phagosome into the cytosol. In contrast, acidification and iron accumulation still occur at the positions of the phagosomes nearer to the cores of the particles. Our study strengthens the concept that coupling metabolic and signaling reaction cascades can be spatially confined by localized limited diffusion.

8.
Soft Matter ; 18(9): 1757-1766, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35072193

RESUMEN

The use of colloid supported lipid bilayers (CSLBs) for assembling colloidal structures has been of recent interest. Here, we use multi-component lipid bilayer membranes formed around anisotropic colloids and show that the curvature anisotropy of the colloids drives a sorting of the lipids in the membrane along the colloids. We then exploit this curvature-sensitive lipid sorting to create "shape-anisotropic patchy colloids" - specifically, we use colloids with six rods sticking out of a central cubic core, "hexapods", for this purpose and demonstrate that membrane patches self-assemble at the tip of each of the six colloidal rods. The membrane patches are rendered sticky using biotinylated lipids in complement with a biotin-binding streptavidin protein. Finally, using these "shape-anisotropic patchy colloids", we demonstrate the directed assembly of colloidal links, paving the way for the creation of heterogeneous and flexible colloidal structures.


Asunto(s)
Coloides , Membrana Dobles de Lípidos , Anisotropía , Coloides/química , Membrana Dobles de Lípidos/química , Transporte de Proteínas
9.
Soft Matter ; 17(36): 8291-8299, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550152

RESUMEN

The viscoelastic properties of filaments and biopolymers play a crucial role in soft and biological materials from biopolymer networks to novel synthetic metamaterials. Colloidal particles with specific valency allow mimicking polymers and more complex molecular structures at the colloidal scale, offering direct observation of their internal degrees of freedom. Here, we elucidate the time-dependent viscoelastic response in the bending of isolated semi-flexible colloidal polymers, assembled from dipatch colloidal particles by reversible critical Casimir forces. By tuning the patch-patch interaction strength, we adjust the polymers' viscoelastic properties, and follow spontaneous bending modes and their relaxation directly on the particle level. We find that the elastic response is well described by that of a semiflexible rod with persistence length of order 1000 µm, tunable by the critical Casimir interaction strength. We identify the viscous relaxation on longer timescales to be due to internal friction, leading to a wavelength-independent relaxation time similar to single biopolymers, but in the colloidal case arising from the contact mechanics of the bonded patches. These tunable mechanical properties of assembled colloidal filaments open the door to "colloidal architectures", rationally designed (network) structures with desired topology and mechanical properties.

10.
Nature ; 597(7875): 220-224, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497391

RESUMEN

A key aspect of living cells is their ability to harvest energy from the environment and use it to pump specific atomic and molecular species in and out of their system-typically against an unfavourable concentration gradient1. Active transport allows cells to store metabolic energy, extract waste and supply organelles with basic building blocks at the submicrometre scale. Unlike living cells, abiotic systems do not have the delicate biochemical machinery that can be specifically activated to precisely control biological matter2-5. Here we report the creation of microcapsules that can be brought out of equilibrium by simple global variables (illumination and pH), to capture, concentrate, store and deliver generic microscopic payloads. Borrowing no materials from biology, our design uses hollow colloids serving as spherical cell-membrane mimics, with a well-defined single micropore. Precisely tunable monodisperse capsules are the result of a synthetic self-inflation mechanism and can be produced in bulk quantities. Inside the hollow unit, a photoswitchable catalyst6 produces a chemical gradient that propagates to the exterior through the membrane's micropore and pumps target objects into the cell, acting as a phoretic tractor beam7. An entropic energy barrier8,9 brought about by the micropore's geometry retains the cargo even when the catalyst is switched off. Delivery is accomplished on demand by reversing the sign of the phoretic interaction. Our findings provide a blueprint for developing the next generation of smart materials, autonomous micromachinery and artificial cell-mimics.


Asunto(s)
Materiales Biomiméticos/metabolismo , Materiales Biomiméticos/efectos de la radiación , Biomimética , Membrana Celular/metabolismo , Coloides/metabolismo , Coloides/efectos de la radiación , Transporte Biológico Activo/efectos de la radiación , Materiales Biomiméticos/química , Membrana Celular/efectos de la radiación , Coloides/química , Emulsiones/química , Entropía , Concentración de Iones de Hidrógeno , Luz
11.
J Am Chem Soc ; 143(33): 13175-13183, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34392686

RESUMEN

Colloidal clusters are prepared by assembling positively charged cross-linked polystyrene (PS) particles onto negatively charged liquid cores of swollen polymer particles. PS particles at the interface of the liquid core are closely packed around the core due to interfacial wetting. Then, by evaporating solvent in the liquid cores, polymers in the cores are solidified and the clusters are cemented. As the swelling ratio of PS cores increases, cores at the center of colloidal clusters are exposed, forming patchy colloidal clusters. Finally, by density gradient centrifugation, high-purity symmetric colloidal clusters are obtained. When silica-PS core-shell particles are swollen and serve as the liquid cores, hybrid colloidal clusters are obtained in which each silica nanoparticle is relocated to the liquid core interface during the swelling-deswelling process breaking symmetry in colloidal clusters as the silica nanoparticle in the core is comparable in size with the PS particle in the shell. The configuration of colloidal clusters is determined once the number of particles around the liquid core is given, which depends on the size ratio of the liquid core and shell particle. Since hybrid clusters are heavier than PS particles, they can be purified using centrifugation.

12.
Nat Chem ; 13(6): 514-515, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34075216

Asunto(s)
Metalurgia
13.
Soft Matter ; 17(25): 6176-6181, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34095912

RESUMEN

We describe a general procedure for the large-scale fabrication of bowl-shaped colloidal particles using an emulsion templating technique. Following this method, single polymeric seed particles become located on individual oil droplet surfaces. The polymer phase is subsequently plasticized using an appropriate solvent. In this critical step, the compliant seed is deformed by surface tension, with the droplet serving as a templating surface. Solvent evaporation freezes the desired particle shape and the oil is subsequently removed by alcohol dissolution. The resulting uniformly-shaped colloidal particles were studied using scanning electron and optical microscopy. By adjusting the droplet size and the seed particle diameter, we demonstrate that the final particle shape can be controlled precisely, from shallow lenses to deep bowls. We also show that the colloid's uniformity and abundant quantity allowed the depletion-mediated assembly of flexible colloidal chains and clusters.

14.
ACS Appl Mater Interfaces ; 13(1): 1651-1661, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33379868

RESUMEN

A novel green protocol for the consolidation and protection of waterlogged archeological woods with wax microparticles has been designed. First, we focused on the development of halloysite nanotubes (HNTs) based Pickering emulsions using wax as the inner phase of the oil-in-water droplets. The optimization of the preparation strategy was supported by both optical microscopy and scanning electron microscopy, which allowed us to show the morphological features of the prepared hybrid systems and their structural properties, i.e., the distribution of the clay at the interface. Also, the dependence of the overall dimensions of the prepared systems on the halloysite content was demonstrated. Microdifferential scanning calorimetry (µ-DSC) was conducted in order to assess whether the thermal properties of the wax are affected after its interaction with HNTs. Then, the Pickering emulsions were employed for the treatment of waterlogged wooden samples. Compared to the archeological woods treated with pure wax, the addition of nanotubes induced a remarkable improvement in the mechanical performance in terms of stiffness and flexural strength. The proposed protocol is environmentally friendly since water is the only solvent used throughout the entire procedure, even if wax is vehiculated into the pores at room temperature. As a consequence, the design of wax/halloysite Pickering emulsions represents a promising strategy for the preservation of wooden artworks, and it has a great potential to be scaled up, thus becoming also exploitable for the treatments of shipwrecks of large size.

15.
Nature ; 585(7826): 524-529, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32968261

RESUMEN

Self-assembling colloidal particles in the cubic diamond crystal structure could potentially be used to make materials with a photonic bandgap1-3. Such materials are beneficial because they suppress spontaneous emission of light1 and are valued for their applications as optical waveguides, filters and laser resonators4, for improving light-harvesting technologies5-7 and for other applications4,8. Cubic diamond is preferred for these applications over more easily self-assembled structures, such as face-centred-cubic structures9,10, because diamond has a much wider bandgap and is less sensitive to imperfections11,12. In addition, the bandgap in diamond crystals appears at a refractive index contrast of about 2, which means that a photonic bandgap could be achieved using known materials at optical frequencies; this does not seem to be possible for face-centred-cubic crystals3,13. However, self-assembly of colloidal diamond is challenging. Because particles in a diamond lattice are tetrahedrally coordinated, one approach has been to self-assemble spherical particles with tetrahedral sticky patches14-16. But this approach lacks a mechanism to ensure that the patchy spheres select the staggered orientation of tetrahedral bonds on nearest-neighbour particles, which is required for cubic diamond15,17. Here we show that by using partially compressed tetrahedral clusters with retracted sticky patches, colloidal cubic diamond can be self-assembled using patch-patch adhesion in combination with a steric interlock mechanism that selects the required staggered bond orientation. Photonic bandstructure calculations reveal that the resulting lattices (direct and inverse) have promising optical properties, including a wide and complete photonic bandgap. The colloidal particles in the self-assembled cubic diamond structure are highly constrained and mechanically stable, which makes it possible to dry the suspension and retain the diamond structure. This makes these structures suitable templates for forming high-dielectric-contrast photonic crystals with cubic diamond symmetry.

16.
Soft Matter ; 16(32): 7438-7446, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32633315

RESUMEN

Regioselectivity in colloidal self-assembly typically requires specific chemical interactions to guide particle binding. In this paper, we describe a new method to form selective colloidal bonds that relies solely on polymer adsorption. Mixtures of polymer-coated and bare particles are initially stable due to long-ranged electrostatic repulsion. When their charge is screened, the two species can approach each other close enough for polymer bridges to form, binding the particles together. By utilizing colloidal dumbbells, where each lobe is coated with polymer brushes of differing lengths, we demonstrate that the Debye screening length serves as a selective switch for the assembly of bare tracer particles onto the two lobes. We model the interaction using numerical self-consistent field lattice computations and show how regioselectivity arises from just a few nanometers difference in polymer brush length.

17.
Nature ; 580(7804): 487-490, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322078

RESUMEN

From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces1-4. On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels5-7. Although various systems have been engineered to grow binary crystals8-11, native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information12-18, polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.

18.
Soft Matter ; 16(17): 4274-4282, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32307507

RESUMEN

The fundamental and practical importance of particle stabilization has motivated various characterization methods for studying polymer brushes on particle surfaces. In this work, we show how one can perform sensitive measurements of neutral polymer coating on colloidal particles using a commercial zetameter and salt solutions. By systematically varying the Debye length, we study the mobility of the polymer-coated particles in an applied electric field and show that the electrophoretic mobility of polymer-coated particles normalized by the mobility of non-coated particles is entirely controlled by the polymer brush and independent of the native surface charge, here controlled with pH, or the surface-ion interaction. Our result is rationalized with a simple hydrodynamic model, allowing for the estimation of characteristics of the polymer coating: the brush length L, and the Brinkman length ξ, determined by its resistance to flows. We demonstrate that the Debye layer provides a convenient and faithful probe to the characterization of polymer coatings on particles. Because the method simply relies on a conventional zetameter, it is widely accessible and offers a practical tool to rapidly probe neutral polymer brushes, an asset in the development and utilization of polymer-coated colloidal particles.

19.
Front Immunol ; 11: 607945, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33679696

RESUMEN

The immune system has to cope with a wide range of irregularly shaped pathogens that can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g., transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general conclusions of how the size and geometry of a pathogen affect its uptake and processing by phagocytes of the immune system. We compared both theoretical and experimental studies with different cells, model particles, and pathogenic microbes (particularly fungi) showing that particle size, shape, rigidity, and surface roughness are important parameters for cellular uptake and subsequent immune responses, particularly inflammasome activation and T cell activation. Understanding how the physical properties of particles affect immune responses can aid the design of better vaccines.


Asunto(s)
Hongos/patogenicidad , Sistema Inmunológico/microbiología , Animales , Citoesqueleto/inmunología , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Endocitosis , Hongos/inmunología , Interacciones Huésped-Patógeno , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inflamasomas/metabolismo , Activación de Linfocitos , Modelos Teóricos , Tamaño de la Partícula , Fagocitosis , Propiedades de Superficie , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/microbiología , Virión/inmunología , Virión/patogenicidad , Virus/inmunología , Virus/patogenicidad
20.
Nat Mater ; 18(12): 1270-1271, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31748646
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...