Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075293

RESUMEN

Within the cell, chemical reactions are often confined and organized through a modular architecture. This facilitates the targeted localization of molecular species and their efficient translocation to subsequent sites. Here we present a cell-free nanoscale model that exploits compartmentalization strategies to carry out regulated protein unfolding and degradation. Our synthetic model comprises two connected DNA origami nanocompartments (each measuring 25 nm × 41 nm × 53 nm): one containing the protein unfolding machine, p97, and the other housing the protease chymotrypsin. We achieve the unidirectional immobilization of p97 within the first compartment, establishing a gateway mechanism that controls substrate recruitment, translocation and processing within the second compartment. Our data show that, whereas spatial confinement increases the rate of the individual reactions by up to tenfold, the physical connection of the compartmentalized enzymes into a chimera efficiently couples the two reactions and reduces off-target proteolysis by almost sixfold. Hence, our modular approach may serve as a blueprint for engineering artificial nanofactories with reshaped catalytic performance and functionalities beyond those observed in natural systems.

2.
Nanoscale ; 9(13): 4486-4496, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28317958

RESUMEN

Dynamic DNA nanotechnology relies on the integration of small switchable motifs at suitable positions of DNA nanostructures, thus enabling the manipulation of matter with nanometer spatial accuracy in a trigger-dependent fashion. Typical examples of such motifs are hairpins, whose elongation into duplexes can be used to perform long-range, translational movements. In this work, we used temperature-dependent FRET spectroscopy to determine the thermal stabilities of distinct sets of hairpins integrated into the central seam of a DNA origami structure. We then developed a hybrid spring model to describe the energy landscape of the tethered hairpins, combining the thermodynamic nearest-neighbor energy of duplex DNA with the entropic free energy of single-stranded DNA estimated using a worm-like chain approximation. We show that the organized scaffolding of multiple hairpins enhances the thermal stability of the device and that the coordinated action of the tethered motors can be used to mechanically unfold a G-quadruplex motif bound to the inner cavity of the origami structure, thus surpassing the operational capabilities of freely diffusing motors. Finally, we increased the complexity of device functionality through the insertion of two sets of parallel hairpins, resulting in four distinct states and in the reversible localization of desired molecules within the reconfigurable regions of the origami architecture.


Asunto(s)
ADN/química , G-Cuádruplex , Nanoestructuras , Conformación de Ácido Nucleico
3.
Bioconjug Chem ; 12(1): 62-70, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11170367

RESUMEN

New PEG derivatives were studied for peptide and protein modification, based upon an amino acid arm, Met-Nle or Met-beta Ala, activated as succinimidyl ester. PEG-Met-Nle-OSu or PEG-Met-beta Ala-OSu react with amino groups in protein-yielding conjugates with stable amide bond. From these conjugates PEG may be removed by BrCN treatment, leaving Nle or beta Ala as reporter amino acid, at the site where PEG was bound. The conjugation of PEG and its removal by BrCN treatment was assessed on a partial sequence of glucagone and on lysozyme as model peptide or protein. Furthermore, insulin, a protein with three potential sites of PEGylation, was modified by PEG-Met-Nle, and the PEG isomers were separated by HPLC. After removal of PEG, as reported above, the sites of PEGylation were identified by characterization of the two insulin chains obtained after reduction and carboxymethylation. Mass spectrometry, amino acid analysis and Edman sequence, could reveal the position of the reporter norleucine that corresponds to the position of PEG binding.


Asunto(s)
Dipéptidos/síntesis química , Péptidos/química , Polietilenglicoles/química , Polietilenglicoles/síntesis química , Proteínas/química , Dipéptidos/química , Insulina/química , Espectrometría de Masas , Muramidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA