Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 10(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38391424

RESUMEN

Agarose is a natural polysaccharide known for its ability to form thermoreversible hydrogels. While the effects of curing temperature and polysaccharide concentration on mechanical properties have been discussed in the literature, the role of ionic strength has been less studied. In the present manuscript, we investigate the effects of supporting salt concentration and the role of cation (i.e. Na+ or Li+, neighbors in the Hofmeister series), on the setting and performance of agarose hydrogels. Compressive and rheological measurements show that the supporting salts reduce the immediate elastic response of agarose hydrogels, with Li+ showing a stronger effect than Na+ at high ionic strength, while they significantly increase the extent of linear stress-strain response (i.e., linear elasticity). The presence of increasing amounts of added supporting salt also leads to a reduction in hysteresis during mechanical deformation due to loading and unloading cycles, which is more pronounced with Li+ than with Na+. The combination of rheological measurements and NMR relaxometry shows a mesh size in agarose hydrogels in the order of 6-17 nm, with a thickness of the water layer bound to the biopolymer of about 3 nm. Of note, the different structuring of the water within the hydrogel network due to the different alkali seems to play a role for the final performance of the hydrogels.

2.
Adv Healthc Mater ; 12(26): e2300973, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37369130

RESUMEN

The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.


Asunto(s)
Actinas , Hidrogeles , Sefarosa/química , Hidrogeles/química , Adhesión Celular , Cinética
3.
Carbohydr Polym ; 302: 120369, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604049

RESUMEN

In vitro studies of mesenchymal stem cells (MSCs) differentiation have been predominantly performed with non-physiologically elastic materials. Here we report the effect of different viscoplastic ECM mimics on the osteogenic engagement of MSCs in 2D. We have developed soft hydrogels, composed of a lactose-modified chitosan, using a combination of permanent and temporary cross-links. The presence of temporary cross-links has a minor effect on the shear modulus of the hydrogels, but causes an immediate relaxation (dissipation) of the applied stress. This material property leads to early osteogenic commitment of MSCs, as evidenced by gene expression of runt-related transcription factor 2 (RUNX2), type 1 collagen (COL1A1), osteocalcin (OCN), alkaline phosphatase enzyme activity (ALP) and calcium deposit formation. In contrast, cells cultured on purely elastic hydrogels with only permanent cross-link begin to differentiate only after a longer period of time, indicating a dissipation-mediated mechano-sensing in the osteogenic commitment of MSCs.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Hidrogeles/farmacología , Hidrogeles/metabolismo , Células Cultivadas , Osteogénesis , Diferenciación Celular
5.
Biomimetics (Basel) ; 7(4)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36278698

RESUMEN

Thanks to its nutritional and mechanical properties, chia seed mucilage is becoming increasingly popular in the food industry as a small biomolecule. The mechanical properties of an ingredient are a key element for food appreciation during chewing. Therefore, with this study, we explore for the first time the structural changes that chia seed mucilage undergoes when treated with α-amylase, the most abundant enzyme in human saliva. First, rheological time-sweep tests were performed on samples with different enzyme and constant chia mucilage concentrations. Then, the effect of increasing the chia mucilage concentration at a constant enzyme content was investigated. The results show that structural changes occur after enzyme treatment. Rheological measurements show a thickening of the material with an increase in the elastic modulus depending on the concentrations of α-amylase and chia used. This effect is attributed to the release and aggregation of insoluble fibrous aggregates that naturally form the mucilage after the cleavage of the α-1,4-glucoside bond between the α-D-glucopyranose residue and the second ß-D-xylopyranose residue by α-amylase. Thus, our data suggest an α-amylase-mediated restructuring of the chia mucilage network that could have implications for the commercial processing of this material.

6.
Int J Nanomedicine ; 17: 4105-4118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111314

RESUMEN

Introduction: The realization of MRI contrast agents through chemical protocols of functionalization is a strong domain of research. In this work, we developed and formulated a novel hybrid gold nanoparticle system in which a gold salt (HAuCl4) is combined with dotarem, an MRI contrast agent (DOTA) by chelation (Method IN) and stabilized by a lactose-modified chitosan polymer (CTL; Chitlac) to form DOTA IN-CTL AuNPs. Result and Discussion: The authors demonstrate the biological efficiency of these nanoparticles in the case of three cell lines: Mia PaCa-2 (human pancreatic cancer cell line), TIB-75 (murine liver cell line) and KKU-M213 (cholangiocarcinoma cell line). DOTA IN-CTL AuNPs are stable under physiological conditions, are nontoxic, and are very efficient as PTT agents. The highlights, such as high stability and preliminary MRI in vitro and in vivo models, may be suitable for diagnosis and therapy. Conclusion: We proved that DOTA IN-CTL AuNPs have several advantages: i) Biological efficacy on three cell lines: MIA PaCa-2 (human pancreatic cancer cell line), TIB-75 (murine liver cell line) and KKU-M213 (cholangiocarcinoma cell line); ii) high stability, and no-toxicity; iii) high efficiency as a PPT agent. The study conducted on MRI in vitro and in vivo models will be suitable for diagnosis and therapy.


Asunto(s)
Quitosano , Colangiocarcinoma , Nanopartículas del Metal , Neoplasias Pancreáticas , Animales , Quitosano/química , Medios de Contraste/química , Oro/química , Compuestos Heterocíclicos con 1 Anillo , Humanos , Lactosa , Meglumina , Nanopartículas del Metal/química , Ratones , Compuestos Organometálicos , Neoplasias Pancreáticas/diagnóstico por imagen , Polímeros/química , Neoplasias Pancreáticas
8.
Carbohydr Polym ; 288: 119379, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35450641

RESUMEN

Lactose-modified chitosan (CTL) is sulfated using SO3·py or SO3·DMF as sulfating agents. The two products are characterized by elemental analysis, FT-IR, 1H,13C-DEPT-HSQC and 1H,13C-HSQC-TOCSY experiments which allow the extent and selectivity of chemical sulfation to be determined. Dynamic Light Scattering shows a pH-dependent association of the sulfated polysaccharides which are described as flexible by the Smidsrød's B parameter and the intrinsic viscosity at infinite ionic strength. Shear viscosity and intrinsic viscosity show that sulfation protocols lead to chain scission which is more pronounced when SO3·DMF is used. The sulfated samples are able to induce aggregation of human bone marrow mesenchymal stem cells, resulting in the formation of smaller nodules compared to the unmodified CTL sample. Over time, the sample with the higher degree of sulfation allows further aggregation between cell clusters while the sample with the lower degree of sulfation shows dissolution of the aggregates.


Asunto(s)
Quitosano , Quitosano/química , Quitosano/farmacología , Condrocitos , Glicosaminoglicanos , Humanos , Lactosa/química , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Sulfatos/química , Óxidos de Azufre
9.
Gels ; 8(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35323307

RESUMEN

Strain hardening, i.e., the nonlinear elastic response of materials under load, is a physiological response of biological tissues to mechanical stimulation. It has recently been shown to play a central role in regulating cell fate. In this paper, we investigate the effect of temperature and polymer concentrations on the strain hardening of covalent hydrogels composed of pH-neutral soluble chitosans crosslinked with genipin. A series of highly acetylated chitosans with a fraction of acetylated units, FA, in the range of 0.4-0.6 was synthesized by the homogeneous re-N-acetylation of a partially acetylated chitosan or the heterogeneous deacetylation of chitin. A chitosan sample with an FA = 0.44 was used to prepare hydrogels with genipin as a crosslinker at a neutral pH. Time and frequency sweep experiments were then performed to obtain information on the gelling kinetics and mechanical response of the resulting hydrogels under small amplitude oscillatory shear. While the shear modulus depends on the chitosan concentration and is almost independent of the gel temperature, we show that the extent of hardening can be modulated when the gelling temperature is varied and is almost independent of the experimental conditions used to build the hydrogels (ex situ or in situ gelation). The overall effect is attributed to a subtle balance between the physical (weak) entanglements and covalent (strong) crosslinks that determine the mechanical response of highly acetylated chitosan hydrogels at large deformations.

10.
Molecules ; 27(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35164186

RESUMEN

Insufficient intake of beneficial food components into the human body is a major issue for many people. Among the strategies proposed to overcome this complication, colloid systems have been proven to offer successful solutions in many cases. The scientific community agrees that the production of colloid delivery systems is a good way to adequately protect and deliver nutritional components. In this review, we present the recent advances on bioactive phenolic compounds delivery mediated by colloid systems. As we are aware that this field is constantly evolving, we have focused our attention on the progress made in recent years in this specific field. To achieve this goal, structural and dynamic aspects of different colloid delivery systems, and the various interactions with two bioactive constituents, are presented and discussed. The choice of the appropriate delivery system for a given molecule depends on whether the drug is incorporated in an aqueous or hydrophobic environment. With this in mind, the aim of this evaluation was focused on two case studies, one representative of hydrophobic phenolic compounds and the other of hydrophilic ones. In particular, hydroxytyrosol was selected as a bioactive phenol with a hydrophilic character, while curcumin was selected as typical representative hydrophobic molecules.


Asunto(s)
Coloides/administración & dosificación , Curcumina/administración & dosificación , Alcohol Feniletílico/análogos & derivados , Portadores de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Alcohol Feniletílico/administración & dosificación
11.
Biomacromolecules ; 22(7): 2902-2909, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34161074

RESUMEN

Strain hardening has recently emerged as a near-universal response of biological tissues to mechanical stimulation as well as a powerful regulator of cell fate. Understanding the mechanistic basis for this nonlinear elasticity is crucial for developing bioinspired materials that mimic extracellular matrix mechanics. Here, we show that covalent networks built from highly acetylated chitosans exhibit strain hardening at physiological pH and osmolarity. While varying the chitosan physical-chemical composition and network connectivity, we provide evidence that temporary nodes arising from the entangling of chains between stable cross-links are at the root of nonlinear elasticity. The contour length (Lc) of the said chains revealed that the larger the chain length between the cross-links, the greater is the entanglement over disentanglement upon network stretching. To this end, we calculated that the minimum number of Khun's segments in Lc that contributes to the onset of strain hardening is 15. Furthermore, we identified a relationship between critical strain marking nonlinear elasticity and the network connectivity, being similar to that found for the cytoskeletal collagen matrix, indicating the potential use of semiflexible (neutral pH-soluble) chitosans in assembling extracellular matrix mimics.


Asunto(s)
Quitosano , Colágeno , Elasticidad , Matriz Extracelular , Geles , Estrés Mecánico
12.
Gels ; 7(2)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923998

RESUMEN

In this contribution we report insights on the rheological properties of chia (Salvia hispanica) seed mucilage hydrogels. Creep experiments performed in steady state conditions allowed calculation of Newtonian viscosities for chia hydrogels with different polymer concentration, pointing at inter-chain interactions as the main responsible for the different behavior toward network slipping under constant stress. A combination of oscillatory frequency and stress sweep tests highlighted a moderate effect of temperature in influencing hydrogel mechanics. The latter results prompted us to investigate potential biological functions for this set of biomaterials. Lactate Dehydrogenase assay proved the lack of cytotoxicity of chia suspensions toward Human Mesenchymal Stem Cells from adipose tissue used here as a cell model. Differentiation experiments were finally undertaken to verify the influence of chia samples on osteo-induction triggered by chemical differentiation factors. Alkaline Phosphatase enzyme activity assay and Alizarin red staining demonstrated that chia mucilage did not alter in vitro stem cell differentiation. Collectively, this set of experiments revealed an almost inert role associated with chia suspensions, indicating a possible application of chia-based networks as scaffold models to study osteogenesis in vitro.

13.
Molecules ; 26(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513925

RESUMEN

The capability of some polymers, such as chitosan, to form low cost gels under mild conditions is of great application interest. Ionotropic gelation of chitosan has been used predominantly for the preparation of gel beads for biomedical application. Only in the last few years has the use of this method been extended to the fabrication of chitosan-based flat structures. Herein, after an initial analysis of the major applications of chitosan flat membranes and films and their usual methods of synthesis, the process of ionotropic gelation of chitosan and some recently proposed novel procedures for the synthesis of flat structures are presented.


Asunto(s)
Quitosano/química , Geles/química , Humanos , Polímeros/química
14.
Macromol Biosci ; 20(12): e2000236, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32975019

RESUMEN

Mounting evidences have recognized that dual cross-link and double-network gels can promisingly recapitulate the complex living tissue architecture and overcome mechanical limitations of conventional scaffolds used hitherto in regenerative medicine. Here, dual cross-link gels formed of a bioactive lactose-modified chitosan reticulated via both temporary (boric acid-based) and permanent (genipin-based) cross-linkers are reported. While boric acid rapidly binds to lactitol flanking diols increasing the overall viscosity, a slow temperature-driven genipin binding process takes place allowing for network strengthening. Combination of frequency and stress sweep experiments in the linear stress-strain region shows that ultimate gel strength, toughness, and viscoelasticity depend on polymer-to-genipin molar ratio. Notably, herewith it is demonstrated that linear stretching correlates with strain energy dissipation through boric acid binding/unbinding dynamics. Strain-hardening effect in the nonlinear regime, along with good biocompatibility in vitro, points at an interesting role of present system as biological extracellular matrix substitute.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Lactosa/química , Materiales Biocompatibles/farmacología , Ácidos Bóricos/química , Quitosano/farmacología , Geles/química , Geles/farmacología , Humanos , Iridoides/química , Iridoides/farmacología , Lactosa/farmacología , Medicina Regenerativa , Estrés Mecánico , Viscosidad/efectos de los fármacos
15.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957651

RESUMEN

The present manuscript deals with the elucidation of the mechanism of genipin binding by primary amines at neutral pH. UV-VIS and CD measurements both in the presence of oxygen and in oxygen-depleted conditions, combined with computational analyses, led to propose a novel mechanism for the formation of genipin derivatives. The indications collected with chiral and achiral primary amines allowed interpreting the genipin binding to a lactose-modified chitosan (CTL or Chitlac), which is soluble at all pH values. Two types of reaction and their kinetics were found in the presence of oxygen: (i) an interchain reticulation, which involves two genipin molecules and two polysaccharide chains, and (ii) a binding of one genipin molecule to the polymer chain without chain-chain reticulation. The latter evolves in additional interchain cross-links, leading to the formation of the well-known blue iridoid-derivatives.


Asunto(s)
Quitosano/química , Iridoides/química , Lactosa/química , Aminas/química , Materiales Biocompatibles/química , Quitosano/análogos & derivados , Quitosano/síntesis química , Dicroismo Circular , Química Computacional , Reactivos de Enlaces Cruzados/química , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Oxígeno/química , Polisacáridos/química , Espectrofotometría Ultravioleta
16.
Molecules ; 25(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230971

RESUMEN

Chitosan derivatives, and more specifically, glycosylated derivatives, are nowadays attracting much attention within the scientific community due to the fact that this set of engineered polysaccharides finds application in different sectors, spanning from food to the biomedical field. Overcoming chitosan (physical) limitations or grafting biological relevant molecules, to mention a few, represent two cardinal strategies to modify parent biopolymer; thereby, synthetizing high added value polysaccharides. The present review is focused on the introduction of oligosaccharide side chains on the backbone of chitosan. The synthetic aspects and the effect on physical-chemical properties of such modifications are discussed. Finally, examples of potential applications in biomaterials design and drug delivery of these novel modified chitosans are disclosed.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Sistemas de Liberación de Medicamentos/métodos , Oligosacáridos/química , Ingeniería de Tejidos/métodos , Animales , Quitosano/análogos & derivados , Quitosano/síntesis química , Glicosilación , Humanos , Simulación de Dinámica Molecular , Nanopartículas/química
17.
Polymers (Basel) ; 12(4)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294992

RESUMEN

A miscibility study between oppositely charged polyelectrolytes, namely hyaluronic acid and a lactose-modified chitosan, is here reported. Experimental variables such as polymers' weight ratios, pH values, ionic strengths and hyaluronic acid molecular weights were considered. Transmittance analyses demonstrated the mutual solubility of the two biopolymers at a neutral pH. The onset of the liquid-liquid phase separation due to electrostatic interactions between the two polymers was detected at pH 4.5, and it was found to be affected by the overall ionic strength, the modality of mixing and the polymers' weight ratio. Thorough Dynamic Light Scattering (DLS) measurements were performed to check the quality of the formed coacervates by investigating their dimensions, homogeneity and surface charge. The whole DLS results highlighted the influence of the hyaluronic acid molecular weight in affecting coacervates' dispersity and size.

18.
Molecules ; 25(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32121005

RESUMEN

This contribution is aimed at extending our previous findings on the formation and stability of chitosan/hyaluronan-based complex coacervates. Colloids are herewith formed by harnessing electrostatic interactions between the two polyelectrolytes. The presence of tiny amounts of the multivalent anion tripolyphosphate (TPP) in the protocol synthesis serves as an adjuvant "point-like" cross-linker for chitosan. Hydrochloride chitosans at different viscosity average molar mass, , in the range 10,000-400,000 g/mol, and fraction of acetylated units, FA, (0.16, 0.46 and 0.63) were selected to fabricate a large library of formulations. Concepts such as coacervate size, surface charge and homogeneity in relation to chitosan variables are herein disclosed. The stability of coacervates in Phosphate Buffered Saline (PBS) was verified by means of scattering techniques, i.e., Dynamic Light Scattering (DLS) and Small-Angle X-ray Scattering (SAXS). The conclusions from this set of experiments are the following: (i) a subtle equilibrium between chitosan FA and does exist in ensuring colloidal stability; (ii) once diluted in PBS, osmotic swelling-driven forces trigger the enlargement of the polymeric mesh with an ensuing increase of coacervate size and porosity.


Asunto(s)
Quitosano/química , Coloides/química , Ácido Hialurónico/química , Dispersión Dinámica de Luz , Concentración de Iones de Hidrógeno , Polielectrolitos/química , Polifosfatos/química , Dispersión del Ángulo Pequeño , Viscosidad
19.
J Mater Sci Mater Med ; 31(3): 25, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060634

RESUMEN

The intravaginal route of administration can be exploited to treat local diseases and for systemic delivery. In this work, we developed an alginate/chitosan membrane sufficiently stable in a simulated vaginal fluid and able to dissolve over time at a very slow and linear rate. The membrane demonstrated good mechanical properties both in its swollen and dry form. As a study case, we evaluated the viability of this potential drug delivery system for the treatment of bacterial vaginosis, a common disease affecting women in their reproductive age. Metronidazole was effectively included in the alginate/chitosan membrane and its bactericide effect was demonstrated against Staphylococcus aureus and Gardnerella vaginalis, simultaneously showing good biocompatibility with a cervix epithelial cell line. Since this alginate/chitosan membrane is stable in a simulated vaginal environment, is easy to fabricate and can be used for the controlled release of a model drug, it represents a promising drug delivery system for local intravaginal applications.


Asunto(s)
Administración Intravaginal , Alginatos/química , Antibacterianos/administración & dosificación , Quitosano/química , Sistemas de Liberación de Medicamentos , Metronidazol/administración & dosificación , Vaginosis Bacteriana/tratamiento farmacológico , Adhesividad , Materiales Biocompatibles , Cuello del Útero/efectos de los fármacos , Fuerza Compresiva , Células Epiteliales/efectos de los fármacos , Femenino , Gardnerella vaginalis/efectos de los fármacos , Humanos , Hidrogeles/química , Cinética , Membranas Artificiales , Microscopía Confocal , Staphylococcus aureus/efectos de los fármacos , Estrés Mecánico , Vagina/efectos de los fármacos
20.
Carbohydr Polym ; 230: 115641, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887884

RESUMEN

The present contribution deals with the synthesis and characterization of N-isopropyl chitosan in which the introduction of hydrophobic groups leads to an increased flexibility of the polysaccharide backbone. The isopropyl groups extend the solubility of the modified-chitosan samples and render the modified chitosan a pH- and thermo-sensitive system for hydrogel formation. Indeed, upon varying the pH of the system and/or its temperature within a range compatible with biological applications, a non-reversible sol-gel transition occurs, as determined through extended rheological analyses. The modified chitosan samples show a very good biocompatibility as determined through preliminary viability and cell growth experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...