Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 11: 684713, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136410

RESUMEN

INTRODUCTION: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant neoplasms, as many cases go undetected until they reach an advanced stage. Integrin αvß6 is a cell surface receptor overexpressed in PDAC. Consequently, it may serve as a target for the development of probes for imaging diagnosis and radioligand therapy. Engineered cystine knottin peptides specific for integrin αvß6 have recently been developed showing high affinity and stability. This study aimed to evaluate an integrin αvß6-specific knottin molecular probe containing the therapeutic radionuclide 177Lu for targeting of PDAC. METHODS: The expression of integrin αvß6 in PDAC cell lines BxPC-3 and Capan-2 was analyzed using RT-qPCR and immunofluorescence. In vitro competition and saturation radioligand binding assays were performed to calculate the binding affinity of the DOTA-coupled tracer loaded with and without lutetium to BxPC-3 and Capan-2 cell lines as well as the maximum number of binding sites in these cell lines. To evaluate tracer accumulation in the tumor and organs, SPECT/CT, biodistribution and dosimetry projections were carried out using a Capan-2 xenograft tumor mouse model. RESULTS: RT-qPCR and immunofluorescence results showed high expression of integrin αvß6 in BxPC-3 and Capan-2 cells. A competition binding assay revealed high affinity of the tracer with IC50 values of 1.69 nM and 9.46 nM for BxPC-3 and Capan-2, respectively. SPECT/CT and biodistribution analysis of the conjugate 177Lu-DOTA-integrin αvß6 knottin demonstrated accumulation in Capan-2 xenograft tumors (3.13 ± 0.63%IA/g at day 1 post injection) with kidney uptake at 19.2 ± 2.5 %IA/g, declining much more rapidly than in tumors. CONCLUSION: 177Lu-DOTA-integrin αvß6 knottin was found to be a high-affinity tracer for PDAC tumors with considerable tumor accumulation and moderate, rapidly declining kidney uptake. These promising results warrant a preclinical treatment study to establish therapeutic efficacy.

2.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120925

RESUMEN

This study identified and confirmed angiotensin II (ATII) as a strong activator of signaling in neuroendocrine neoplasm (NEN) cells. Expression analyses of the ATII receptor type 1 (AGTR1) revealed an upregulation of mRNA levels (RT-qPCR) and radioligand binding (autoradiography) in small-intestinal (n = 71) NEN tissues compared to controls (n = 25). NEN cells with high AGTR1 expression exhibited concentration-dependent calcium mobilization and chromogranin A secretion upon stimulation with ATII, blocked by AGTR1 antagonism and Gαq inhibition. ATII also stimulated serotonin secretion from BON cells. AGTR1 ligand saralasin was coupled to a near-infrared fluorescent (NIRF) dye and tested for its biodistribution in a nude mouse model bearing AGTR1-positive BON and negative QGP-1 xenograft tumors. NIRF imaging showed significantly higher uptake in BON tumors. This proof of concept establishes AGTR1 as a novel target in NEN, paving the way for translational chelator-based probes for diagnostic PET imaging and radioligand therapy.

3.
Br J Cancer ; 122(7): 1023-1036, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32063604

RESUMEN

BACKGROUND: Drug resistance remains as one of the major challenges in melanoma therapy. It is well known that tumour cells undergo phenotypic switching during melanoma progression, increasing melanoma plasticity and resistance to mitogen-activated protein kinase inhibitors (MAPKi). METHODS: We investigated the melanoma phenotype switching using a partial reprogramming model to de-differentiate murine melanoma cells and target melanoma therapy adaptation against MAPKi. RESULTS: Here, we show that partially reprogrammed cells are a less proliferative and more de-differentiated cell population, expressing a gene signature for stemness and suppressing melanocyte-specific markers. To investigate adaptation to MAPKi, cells were exposed to B-Raf Proto-Oncogene (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors. De-differentiated cells became less sensitive to MAPKi, showed increased cell viability and decreased apoptosis. Furthermore, T-type calcium channels expression increased in adaptive murine cells and in human adaptive melanoma cells. Treatment with the calcium channel blocker mibefradil induced cell death, differentiation and susceptibility to MAPKi in vitro and in vivo. CONCLUSION: In summary, we show that partial reprogramming of melanoma cells induces de-differentiation and adaptation to MAPKi. Moreover, we postulated a calcium channel blocker such as mibefradil, as a potential candidate to restore sensitivity to MAPKi in adaptive melanoma cells.


Asunto(s)
Canales de Calcio Tipo T/genética , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Melanoma/patología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Proto-Oncogenes Mas
4.
Int J Cancer ; 145(12): 3462-3477, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31131878

RESUMEN

Alterations in histone modifications play a crucial role in the progression of various types of cancer. The histone methyltransferase SETDB1 catalyzes the addition of methyl groups to histone H3 at lysine 9. Here, we describe how overexpression of SETDB1 contributes to melanoma tumorigenesis. SETDB1 is highly amplified in melanoma cells and in the patient tumors. Increased expression of SETDB1, which correlates with SETDB1 amplification, is associated with a more aggressive phenotype in in vitro and in vivo studies. Mechanistically, SETDB1 implements its effects via regulation of thrombospondin 1, and the SET-domain of SETDB1 is essential for the maintenance of its tumorigenic activity. Inhibition of SETDB1 reduces cell growth in melanomas resistant to targeted treatments. Our results indicate that SETDB1 is a major driver of melanoma development and may serve as a potential future target for the treatment of this disease.


Asunto(s)
Carcinogénesis/genética , N-Metiltransferasa de Histona-Lisina/genética , Melanoma/genética , Melanoma/patología , Animales , Carcinogénesis/patología , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Histonas/genética , Humanos , Lisina/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID
5.
Int J Cancer ; 143(11): 2962-2972, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30110134

RESUMEN

Recent studies suggest that malignant melanoma heterogeneity includes subpopulations of cells with features of multipotent neural crest (NC) cells. Zebrafish and mouse models have shown that reactivation of neural crest-specific pathways during transformation determines the invasiveness of melanoma cells. In our study, we show that the neural crest-associated transcription factor FOXD1 plays a key role in the invasion and the migration capacities of metastatic melanomas both in vivo and in vitro. Gene expression profiling analysis identified both an upregulation of FOXD1 in NC and melanoma cells, as well as a downregulation of several genes related to cell invasion in FOXD1 knockdown cells, including MMP9 and RAC1B. Furthermore, we demonstrate that knockdown of RAC1B a tumor-specific isoform of RAC1, significantly impaired melanoma cell migration and invasion and could abrogate enhanced invasiveness induced by FOXD1 overexpression. We conclude that FOXD1 may influence invasion and migration via indirect regulation of MMP9 and RAC1B alternative splicing in melanoma cells.


Asunto(s)
Movimiento Celular/genética , Regulación hacia Abajo/genética , Factores de Transcripción Forkhead/genética , Melanoma/genética , Invasividad Neoplásica/genética , Cresta Neural/metabolismo , Proteína de Unión al GTP rac1/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Metaloproteinasa 9 de la Matriz/genética , Transducción de Señal/genética
6.
Int J Cancer ; 143(12): 3131-3142, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905375

RESUMEN

Melanoma is often characterized by a constitutively active RAS-RAF-MEK-ERK pathway. For targeted therapy, BRAF inhibitors are available that are powerful in the beginning but resistance occurs rather fast. A better understanding of the mechanisms of resistance is urgently needed to increase the success of the treatment. Here, we observed that SOX2 and CD24 are upregulated upon BRAF inhibitor treatment. A similar upregulation was seen in targeted therapy-resistant, melanoma-derived induced pluripotent cancer cells (iPCCs). SOX2 and CD24 are known to promote an undifferentiated and cancer stem cell-like phenotype associated with resistance. We, therefore, elucidated the role of SOX2 and CD24 in targeted therapy resistance in more detail. We found that the upregulation of SOX2 and CD24 required activation of STAT3 and that SOX2 induced the expression of CD24 by binding to its promoter. We find that the overexpression of SOX2 or CD24 significantly increases the resistance toward BRAF inhibitors, while SOX2 knock-down rendered cells more sensitivity toward treatment. The overexpression of CD24 or SOX2 induced Src and STAT3 activity. Importantly, by either CD24 knock-down or Src/STAT3 inhibition in resistant SOX2-overexpressing cells, the sensitivity toward BRAF inhibitors was re-established. Hence, we suggest a novel mechanism of adaptive resistance whereby BRAF inhibition is circumvented via the activation of STAT3, SOX2 and CD24. Thus, to prevent adaptive resistance, it might be beneficial to combine Src/STAT3 inhibitors together with MAPK pathway inhibitors.


Asunto(s)
Antineoplásicos/uso terapéutico , Antígeno CD24/metabolismo , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida , Factores de Transcripción SOXB1/fisiología , Neoplasias Cutáneas/tratamiento farmacológico , Regulación hacia Arriba/fisiología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antígeno CD24/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/genética , Melanoma/metabolismo , Células Madre Neoplásicas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/efectos de los fármacos , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Factores de Transcripción SOXB1/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...