Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35884422

RESUMEN

Triple-negative breast cancers (TNBC) expressing PD-L1 qualify for checkpoint inhibitor immunotherapy. Cyclin E/CDK2 is a potential target axis in TNBC; however, small-molecule drugs at efficacious doses may be associated with toxicity, and treatment alongside immunotherapy requires investigation. We evaluated CDK inhibition at suboptimal levels and its anti-tumor and immunomodulatory effects. Transcriptomic analyses of primary breast cancers confirmed higher cyclin E/CDK2 expression in TNBC compared with non-TNBC. Out of the three CDK2-targeting inhibitors tested, the CDK 2, 7 and 9 inhibitor SNS-032 was the most potent in reducing TNBC cell viability and exerted cytotoxicity against all eight TNBC cell lines evaluated in vitro. Suboptimal SNS-032 dosing elevated cell surface PD-L1 expression in surviving TNBC cells. In mice engrafted with human immune cells and challenged with human MDA-MB-231 TNBC xenografts in mammary fat pads, suboptimal SNS-032 dosing partially restricted tumor growth, enhanced the tumor infiltration of human CD45+ immune cells and elevated cell surface PD-L1 expression in surviving cancer cells. In tumor-bearing mice engrafted with human immune cells, the anti-PD-L1 antibody avelumab, given sequentially following suboptimal SNS-032 dosing, reduced tumor growth compared with SNS-032 alone or with avelumab without prior SNS-032 priming. CDK inhibition at suboptimal doses promotes immune cell recruitment to tumors, PD-L1 expression by surviving TNBC cells and may complement immunotherapy.

2.
Sci Rep ; 10(1): 8869, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483228

RESUMEN

Antibody-Drug Conjugates (ADCs) developed as a targeted treatment approach to deliver toxins directly to cancer cells are one of the fastest growing classes of oncology therapeutics, with eight ADCs and two immunotoxins approved for clinical use. However, selection of an optimum target and payload combination, to achieve maximal therapeutic efficacy without excessive toxicity, presents a significant challenge. We have developed a platform to facilitate rapid and cost-effective screening of antibody and toxin combinations for activity and safety, based on streptavidin-biotin conjugation. For antibody selection, we evaluated internalization by target cells using streptavidin-linked antibodies conjugated to biotinylated saporin, a toxin unable to cross cell membranes. For payload selection, we biotinylated toxins and conjugated them to antibodies linked to streptavidin to evaluate antitumour activity and pre-clinical safety. As proof of principle, we compared trastuzumab conjugated to emtansine via streptavidin-biotin (Trastuzumab-SB-DM1) to the clinically approved trastuzumab emtansine (T-DM1). We showed comparable potency in reduction of breast cancer cell survival in vitro and in growth restriction of orthotopic breast cancer xenografts in vivo. Our findings indicate efficient generation of functionally active ADCs. This approach can facilitate the study of antibody and payload combinations for selection of promising candidates for future ADC development.


Asunto(s)
Antineoplásicos/química , Inmunoconjugados/química , Toxinas Biológicas/química , Trastuzumab/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biotina/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Maitansina/química , Ratones , Ratones Endogámicos NOD , Ratones SCID , Saporinas/química , Estreptavidina/química , Trasplante Heterólogo , Trastuzumab/uso terapéutico
3.
Cancers (Basel) ; 12(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331483

RESUMEN

Despite emerging targeted and immunotherapy treatments, no monoclonal antibodies or antibody-drug conjugates (ADCs) directly targeting tumor cells are currently approved for melanoma therapy. The tumor-associated antigen chondroitin sulphate proteoglycan 4 (CSPG4), a neural crest glycoprotein over-expressed on 70% of melanomas, contributes to proliferative signaling pathways, but despite highly tumor-selective expression it has not yet been targeted using ADCs. We developed a novel ADC comprising an anti-CSPG4 antibody linked to a DNA minor groove-binding agent belonging to the novel pyrridinobenzodiazepine (PDD) class. Unlike conventional DNA-interactive pyrrolobenzodiazepine (PBD) dimer payloads that cross-link DNA, PDD-based payloads are mono-alkylating agents but have similar efficacy and substantially enhanced tolerability profiles compared to PBD-based cross-linkers. We investigated the anti-tumor activity and safety of the anti-CSPG4-(PDD) ADC in vitro and in human melanoma xenografts. Anti-CSPG4-(PDD) inhibited CSPG4-expressing melanoma cell growth and colony formation and triggered apoptosis in vitro at low nanomolar to picomolar concentrations without off-target Fab-mediated or Fc-mediated toxicity. Anti-CSPG4-(PDD) restricted xenograft growth in vivo at 2 mg/kg doses. One 5 mg/kg injection triggered tumor regression in the absence of overt toxic effects or of acquired residual tumor cell resistance. This anti-CSPG4-(PDD) can deliver a highly cytotoxic DNA mono-alkylating payload to CSPG4-expressing tumors at doses tolerated in vivo.

4.
Reproduction ; 158(2): 159-167, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31137007

RESUMEN

Mate choice has been postulated to be MHC-dependent, ensuring the maintenance of polymorphism for species survival. At the molecular level, MHC polymorphism is represented by class-I (MHCI), class-II (MHCII) antigens and their T cell receptors (TCRs). In order to evaluate the presence such immune molecules during male/female interaction, vaginal fluid, vaginal cells, urine, sperm, seminal fluid, cumulus cells, tubal fluid and epithelium were isolated from BALB/c mice and examined for the presence of membrane or soluble MHCI, MHCII, TCRαß and TCRγδ, using immunofluorescence and ELISA techniques, respectively. These molecules were expressed on sperm and seminal fluid in a sperm quality-dependent manner and in vagina, fallopian tube, cumulus cells and urine in an estrus cycle-dependent manner. Vaginal cells showed increased expression of all molecules tested during estrus, while vaginal fluid showed an increase of TCRγδ and decrease of MHCI and MHCII levels, during estrus. Urine showed only increased concentrations of TCRαß during estrus. Cumulus cells expressed MHCI, MHCII, TRCγδ but not TCRαß, while sperm mainly expressed TCRαß and TRCγδ. All molecules were detected in tubal fluids mostly during estrus, while they were almost undetectable during pregnancy. The vaginal environment was shown to affect sperm motility according to the estrus-cycle, whereas sperm motility was affected by antibodies against these molecules. In conclusion, the presence of complementary immune molecules in the male/female interactive environment, except for revealing novel markers for unexplained infertility, provides for the first time evidence for immune-mediated recognition of the two counterparts, enlightening thus a molecular basis for mate choice.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Espermatozoides/inmunología , Vagina/inmunología , Animales , Femenino , Fertilidad/inmunología , Masculino , Preferencia en el Apareamiento Animal , Ratones Endogámicos BALB C , Ratones Endogámicos CBA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...