Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circulation ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686559

RESUMEN

BACKGROUND: Atherosclerosis, a leading cause of cardiovascular disease, involves the pathological activation of various cell types, including immunocytes (eg, macrophages and T cells), smooth muscle cells (SMCs), and endothelial cells. Accumulating evidence suggests that transition of SMCs to other cell types, known as phenotypic switching, plays a central role in atherosclerosis development and complications. However, the characteristics of SMC-derived cells and the underlying mechanisms of SMC transition in disease pathogenesis remain poorly understood. Our objective is to characterize tumor cell-like behaviors of SMC-derived cells in atherosclerosis, with the ultimate goal of developing interventions targeting SMC transition for the prevention and treatment of atherosclerosis. METHODS: We used SMC lineage tracing mice and human tissues and applied a range of methods, including molecular, cellular, histological, computational, human genetics, and pharmacological approaches, to investigate the features of SMC-derived cells in atherosclerosis. RESULTS: SMC-derived cells in mouse and human atherosclerosis exhibit multiple tumor cell-like characteristics, including genomic instability, evasion of senescence, hyperproliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. Specific expression of the oncogenic mutant KrasG12D in SMCs accelerates phenotypic switching and exacerbates atherosclerosis. Furthermore, we provide proof of concept that niraparib, an anticancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. CONCLUSIONS: Our findings demonstrate that atherosclerosis is an SMC-driven tumor-like disease, advancing our understanding of its pathogenesis and opening prospects for innovative precision molecular strategies aimed at preventing and treating atherosclerotic cardiovascular disease.

2.
Arterioscler Thromb Vasc Biol ; 44(4): 930-945, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385291

RESUMEN

BACKGROUND: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS: We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.


Asunto(s)
Aterosclerosis , Enfermedades de las Arterias Carótidas , Placa Aterosclerótica , Humanos , Células Endoteliales/metabolismo , Aterosclerosis/patología , Placa Aterosclerótica/patología , Enfermedades de las Arterias Carótidas/patología , Epítopos/metabolismo , Miocitos del Músculo Liso/metabolismo
3.
Nat Cardiovasc Res ; 3(1): 60-75, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362011

RESUMEN

Clonal hematopoiesis (CH) is an independent risk factor for atherosclerotic cardiovascular disease. Murine models of CH suggest a central role of inflammasomes and IL-1ß in accelerated atherosclerosis and plaque destabilization. Here we show using single-cell RNA sequencing in human carotid plaques that inflammasome components are enriched in macrophages, while the receptor for IL-1ß is enriched in fibroblasts and smooth muscle cells (SMCs). To address the role of inflammatory crosstalk in features of plaque destabilization, we conducted SMC fate mapping in Ldlr-/- mice modeling Jak2VF or Tet2 CH treated with IL-1ß antibodies. Unexpectedly, this treatment minimally affected SMC differentiation, leading instead to a prominent expansion of fibroblast-like cells. Depletion of fibroblasts from mice treated with IL-1ß antibody resulted in thinner fibrous caps. Conversely, genetic inactivation of Jak2VF during plaque regression promoted fibroblast accumulation and fibrous cap thickening. Our studies suggest that suppression of inflammasomes promotes plaque stabilization by recruiting fibroblast-like cells to the fibrous cap.

4.
Adv Healthc Mater ; 13(6): e2302907, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37797407

RESUMEN

In this study, organ-on-chip technology is used to develop an in vitro model of medium-to-large size arteries, the artery-on-a-chip (AoC), with the objective to recapitulate the structure of the arterial wall and the relevant hemodynamic forces affecting luminal cells. AoCs exposed either to in vivo-like shear stress values or kept in static conditions are assessed to generate a panel of novel genes modulated by shear stress. Considering the crucial role played by shear stress alterations in carotid arteries affected by atherosclerosis (CAD) and abdominal aortic aneurysms (AAA) disease development/progression, a patient cohort of hemodynamically relevant specimens is utilized, consisting of diseased and non-diseased (internal control) vessel regions from the same patient. Genes activated by shear stress follow the same expression pattern in non-diseased segments of human vessels. Single cell RNA sequencing (scRNA-seq) enables to discriminate the unique cell subpopulations between non-diseased and diseased vessel portions, revealing an enrichment of flow activated genes in structural cells originating from non-diseased specimens. Furthermore, the AoC served as a platform for drug-testing. It reproduced the effects of a therapeutic agent (lenvatinib) previously used in preclinical AAA studies, therefore extending the understanding of its therapeutic effect through a multicellular structure.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aterosclerosis , Humanos , Arterias , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Progresión de la Enfermedad , Dispositivos Laboratorio en un Chip
6.
Circ Res ; 133(8): 674-686, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37675562

RESUMEN

BACKGROUND: The ADAMTS7 locus was genome-wide significantly associated with coronary artery disease. Lack of the ECM (extracellular matrix) protease ADAMTS-7 (A disintegrin and metalloproteinase-7) was shown to reduce atherosclerotic plaque formation. Here, we sought to identify molecular mechanisms and downstream targets of ADAMTS-7 mediating the risk of atherosclerosis. METHODS: Targets of ADAMTS-7 were identified by high-resolution mass spectrometry of atherosclerotic plaques from Apoe-/- and Apoe-/-Adamts7-/- mice. ECM proteins were identified using solubility profiling. Putative targets were validated using immunofluorescence, in vitro degradation assays, coimmunoprecipitation, and Förster resonance energy transfer-based protein-protein interaction assays. ADAMTS7 expression was measured in fibrous caps of human carotid artery plaques. RESULTS: In humans, ADAMTS7 expression was higher in caps of unstable as compared to stable carotid plaques. Compared to Apoe-/- mice, atherosclerotic aortas of Apoe-/- mice lacking Adamts-7 (Apoe-/-Adamts7-/-) contained higher protein levels of Timp-1 (tissue inhibitor of metalloprotease-1). In coimmunoprecipitation experiments, the catalytic domain of ADAMTS-7 bound to TIMP-1, which was degraded in the presence of ADAMTS-7 in vitro. ADAMTS-7 reduced the inhibitory capacity of TIMP-1 at its canonical target MMP-9 (matrix metalloprotease-9). As a downstream mechanism, we investigated collagen content in plaques of Apoe-/- and Apoe-/-Adamts7-/- mice after a Western diet. Picrosirius red staining of the aortic root revealed less collagen as a readout of higher MMP-9 activity in Apoe-/- as compared to Apoe-/- Adamts7-/- mice. To facilitate high-throughput screening for ADAMTS-7 inhibitors with the aim of decreasing TIMP-1 degradation, we designed a Förster resonance energy transfer-based assay targeting the ADAMTS-7 catalytic site. CONCLUSIONS: ADAMTS-7, which is induced in unstable atherosclerotic plaques, decreases TIMP-1 stability reducing its inhibitory effect on MMP-9, which is known to promote collagen degradation and is likewise associated with coronary artery disease. Disrupting the interaction of ADAMTS-7 and TIMP-1 might be a strategy to increase collagen content and plaque stability for the reduction of atherosclerosis-related events.


Asunto(s)
Proteína ADAMTS7 , Aterosclerosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Inhibidor Tisular de Metaloproteinasa-1 , Animales , Humanos , Ratones , Proteína ADAMTS7/genética , Aterosclerosis/genética , Colágeno/metabolismo , Enfermedad de la Arteria Coronaria/genética , Metaloproteinasa 9 de la Matriz , Placa Aterosclerótica/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Ratones Noqueados para ApoE
7.
Mol Ther Nucleic Acids ; 33: 848-865, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37680984

RESUMEN

An abdominal aortic aneurysm (AAA) is a pathological widening of the aortic wall characterized by loss of smooth muscle cells (SMCs), extracellular matrix degradation, and local inflammation. This condition is often asymptomatic until rupture occurs, leading to high morbidity and mortality rates. Diagnosis is mostly accidental and the only currently available treatment option remains surgical intervention. Circular RNAs (circRNAs) represent a novel class of regulatory non-coding RNAs that originate from backsplicing. Their highly stable loop structure, combined with a remarkable enrichment in body fluids, make circRNAs promising disease biomarkers. We investigated the contribution of circRNAs to AAA pathogenesis and their potential application to improve AAA diagnostics. Gene expression analysis revealed the presence of deregulated circular transcripts stemming from AAA-relevant gene loci. Among these, the circRNA to the Ataxia Telangiectasia Mutated gene (cATM) was upregulated in human AAA specimens, in AAA-derived SMCs, and serum samples collected from aneurysm patients. In primary aortic SMCs, cATM increased upon angiotensin II and doxorubicin stimulation, while its silencing triggered apoptosis. Higher cATM levels made AAA-derived SMCs less vulnerable to oxidative stress, compared with control SMCs. These data suggest that cATM contributes to elicit an adaptive oxidative-stress response in SMCs and provides a reliable AAA disease signature.

8.
Biomolecules ; 13(7)2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37509110

RESUMEN

Popliteal artery aneurysm (PAA) is the most frequent peripheral aneurysm, primarily seen in male smokers with a prevalence below 1%. This exploratory study aims to shed light on cellular mechanisms involved in PAA progression. Sixteen human PAA and eight non-aneurysmatic popliteal artery samples, partially from the same patients, were analyzed by immunohistochemistry, fluorescence imaging, Affymetrix mRNA expression profiling, qPCR and OLink proteomics, and compared to atherosclerotic (n = 6) and abdominal aortic aneurysm (AAA) tissue (n = 19). Additionally, primary cell culture of PAA-derived vascular smooth muscle cells (VSMC) was established for modulation and growth analysis. Compared to non-aneurysmatic popliteal arteries, VSMCs lose the contractile phenotype and the cell proliferation rate increases significantly in PAA. Array analysis identified APOE higher expressed in PAA samples, co-localizing with VSMCs. APOE stimulation of primary human PAA VSMCs significantly reduced cell proliferation. Accordingly, contractile VSMC markers were significantly upregulated. A single case of osseous mechanically induced PAA with a non-diseased VSMC profile emphasizes these findings. Carefully concluded, PAA pathogenesis shows similar features to AAA, yet the mechanisms involved might differ. APOE is specifically higher expressed in PAA tissue and could be involved in VSMC phenotype rescue.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aneurisma de la Arteria Poplítea , Humanos , Masculino , Aneurisma de la Aorta Abdominal/metabolismo , Fenotipo , Miocitos del Músculo Liso/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas/metabolismo
9.
Diagn Pathol ; 18(1): 73, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308870

RESUMEN

Abdominal aortic aneurysm (AAA) is a pathologic enlargement of the infrarenal aorta with an associated risk of rupture. However, the responsible mechanisms are only partially understood. Based on murine and human samples, a heterogeneous distribution of characteristic pathologic features across the aneurysm circumference is expected. Yet, complete histologic workup of the aneurysm sac is scarcely reported. Here, samples from five AAAs covering the complete circumference partially as aortic rings are investigated by histologic means (HE, EvG, immunohistochemistry) and a new method embedding the complete ring. Additionally, two different methods of serial histologic section alignment are applied to create a 3D view. The typical histopathologic features of AAA, elastic fiber degradation, matrix remodeling with collagen deposition, calcification, inflammatory cell infiltration and thrombus coverage were distributed without recognizable pattern across the aneurysm sac in all five patients. Analysis of digitally scanned entire aortic rings facilitates the visualization of these observations. Immunohistochemistry is feasible in such specimen, however, tricky due to tissue disintegration. 3D image stacks were created using open-source and non-generic software correcting for non-rigid warping between consecutive sections. Secondly, 3D image viewers allowed visualization of in-depth changes of the investigated pathologic hallmarks. In conclusion, this exploratory descriptive study demonstrates a heterogeneous histomorphology around the AAA circumference. Warranting an increased sample size, these results might need to be considered in future mechanistic research, especially in reference to intraluminal thrombus coverage. 3D histology of such circular specimen could be a valuable visualization tool for further analysis.


Asunto(s)
Calcinosis , Imagenología Tridimensional , Humanos , Animales , Ratones
10.
J Clin Med ; 12(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373722

RESUMEN

Abdominal aortic aneurysms (AAA) are the most frequent aortic dilation, with considerable morbidity and mortality. Inflammatory (infl) and IgG4-positive AAAs represent specific subtypes of unclear incidence and clinical significance. Here, histologic and serologic analyses with retrospective clinical data acquisition are investigated via detailed histology, including morphologic (HE, EvG: inflammatory subtype, angiogenesis, and fibrosis) and immunhistochemic analyses (IgG and IgG4). In addition, complement factors C3/C4 and immunoglobulins IgG, IgG2, IgG4 and IgE were measured in serum samples and clinical data uses patients' metrics, as well as through semi-automated morphometric analysis (diameter, volume, angulation and vessel tortuosity). A total of 101 eligible patients showed five (5%) IgG4 positive (all scored 1) and seven (7%) inflammatory AAAs. An increased degree of inflammation was seen in IgG4 positive and inflAAA, respectively. However, serologic analysis revealed no increased levels of IgG or IgG4. The operative procedure time was not different for those cases and the short-term clinical outcomes were equal for the entire AAA cohort. Overall, the incidence of inflammatory and IgG4-positive AAA samples seems very low based on histologic and serum analyses. Both entities must be considered distinct disease phenotypes. Short-term operative outcomes were not different for both sub-cohorts.

11.
Mol Ther ; 31(6): 1775-1790, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37147804

RESUMEN

Long non-coding RNAs (lncRNAs) orchestrate various biological processes and regulate the development of cardiovascular diseases. Their potential therapeutic benefit to tackle disease progression has recently been extensively explored. Our study investigates the role of lncRNA Nudix Hydrolase 6 (NUDT6) and its antisense target fibroblast growth factor 2 (FGF2) in two vascular pathologies: abdominal aortic aneurysms (AAA) and carotid artery disease. Using tissue samples from both diseases, we detected a substantial increase of NUDT6, whereas FGF2 was downregulated. Targeting Nudt6 in vivo with antisense oligonucleotides in three murine and one porcine animal model of carotid artery disease and AAA limited disease progression. Restoration of FGF2 upon Nudt6 knockdown improved vessel wall morphology and fibrous cap stability. Overexpression of NUDT6 in vitro impaired smooth muscle cell (SMC) migration, while limiting their proliferation and augmenting apoptosis. By employing RNA pulldown followed by mass spectrometry as well as RNA immunoprecipitation, we identified Cysteine and Glycine Rich Protein 1 (CSRP1) as another direct NUDT6 interaction partner, regulating cell motility and SMC differentiation. Overall, the present study identifies NUDT6 as a well-conserved antisense transcript of FGF2. NUDT6 silencing triggers SMC survival and migration and could serve as a novel RNA-based therapeutic strategy in vascular diseases.


Asunto(s)
Aneurisma de la Aorta Abdominal , Enfermedades de las Arterias Carótidas , ARN Largo no Codificante , Animales , Ratones , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/terapia , Aneurisma de la Aorta Abdominal/metabolismo , Apoptosis/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Porcinos , Oligonucleótidos Antisentido
12.
Cell Mol Life Sci ; 79(10): 512, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094626

RESUMEN

To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine-chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.


Asunto(s)
Aterosclerosis , Factores Inhibidores de la Migración de Macrófagos , Trombosis , Aterosclerosis/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factor Plaquetario 4 , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
13.
mBio ; 8(1)2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28174310

RESUMEN

Members of the genus Mycobacterium are the most prevalent cause of infectious diseases. Mycobacteria have a complex cell envelope containing a peptidoglycan layer and an additional arabinogalactan polymer to which a mycolic acid bilayer is linked; this complex, multilayered cell wall composition (mAGP) is conserved among all CMN group bacteria. The arabinogalactan and mycolic acid synthesis pathways constitute effective drug targets for tuberculosis treatment. Ethambutol (EMB), a classical antituberculosis drug, inhibits the synthesis of the arabinose polymer. Although EMB acts bacteriostatically, its underlying molecular mechanism remains unclear. Here, we used Corynebacterium glutamicum and Mycobacterium phlei as model organisms to study the effects of EMB at the single-cell level. Our results demonstrate that EMB specifically blocks apical cell wall synthesis, but not cell division, explaining the bacteriostatic effect of EMB. Furthermore, the data suggest that members of the family Corynebacterineae have two dedicated machineries for cell elongation (elongasome) and cytokinesis (divisome). IMPORTANCE: Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation.


Asunto(s)
Antituberculosos/farmacología , Pared Celular/efectos de los fármacos , Corynebacterium glutamicum/efectos de los fármacos , Corynebacterium glutamicum/crecimiento & desarrollo , Etambutol/farmacología , Mycobacterium phlei/efectos de los fármacos , Mycobacterium phlei/crecimiento & desarrollo , Pared Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...