Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0297028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557742

RESUMEN

Machine learning techniques that rely on textual features or sentiment lexicons can lead to erroneous sentiment analysis. These techniques are especially vulnerable to domain-related difficulties, especially when dealing in Big data. In addition, labeling is time-consuming and supervised machine learning algorithms often lack labeled data. Transfer learning can help save time and obtain high performance with fewer datasets in this field. To cope this, we used a transfer learning-based Multi-Domain Sentiment Classification (MDSC) technique. We are able to identify the sentiment polarity of text in a target domain that is unlabeled by looking at reviews in a labelled source domain. This research aims to evaluate the impact of domain adaptation and measure the extent to which transfer learning enhances sentiment analysis outcomes. We employed transfer learning models BERT, RoBERTa, ELECTRA, and ULMFiT to improve the performance in sentiment analysis. We analyzed sentiment through various transformer models and compared the performance of LSTM and CNN. The experiments are carried on five publicly available sentiment analysis datasets, namely Hotel Reviews (HR), Movie Reviews (MR), Sentiment140 Tweets (ST), Citation Sentiment Corpus (CSC), and Bioinformatics Citation Corpus (BCC), to adapt multi-target domains. The performance of numerous models employing transfer learning from diverse datasets demonstrating how various factors influence the outputs.


Asunto(s)
Macrodatos , Briozoos , Animales , Análisis de Sentimientos , Algoritmos , Biología Computacional
2.
Sensors (Basel) ; 23(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960574

RESUMEN

The Internet of Things (IoT) has emerged as a fundamental framework for interconnected device communication, representing a relatively new paradigm and the evolution of the Internet into its next phase. Its significance is pronounced in diverse fields, especially healthcare, where it finds applications in scenarios such as medical service tracking. By analyzing patterns in observed parameters, the anticipation of disease types becomes feasible. Stress monitoring with wearable sensors and the Internet of Things (IoT) is a potential application that can enhance wellness and preventative health management. Healthcare professionals have harnessed robust systems incorporating battery-based wearable technology and wireless communication channels to enable cost-effective healthcare monitoring for various medical conditions. Network-connected sensors, whether within living spaces or worn on the body, accumulate data crucial for evaluating patients' health. The integration of machine learning and cutting-edge technology has sparked research interest in addressing stress levels. Psychological stress significantly impacts a person's physiological parameters. Stress can have negative impacts over time, prompting sometimes costly therapies. Acute stress levels can even constitute a life-threatening risk, especially in people who have previously been diagnosed with borderline personality disorder or schizophrenia. To offer a proactive solution within the realm of smart healthcare, this article introduces a novel machine learning-based system termed "Stress-Track". The device is intended to track a person's stress levels by examining their body temperature, sweat, and motion rate during physical activity. The proposed model achieves an impressive accuracy rate of 99.5%, showcasing its potential impact on stress management and healthcare enhancement.


Asunto(s)
Internet de las Cosas , Dispositivos Electrónicos Vestibles , Humanos , Atención a la Salud , Aprendizaje Automático , Movimiento (Física)
3.
Biochem Cell Biol ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906957

RESUMEN

Globally, retinal disorders impact thousands of individuals. Early diagnosis and treatment of these anomalies might halt their development and prevent many people from developing preventable blindness. Iris spot segmentation is critical due to acquiring iris cellular images that suffer from the off-angle iris, noise, and specular reflection. Most currently used iris segmentation techniques are based on edge data and noncellular images. The size of the pigment patches on the surface of the iris increases with eye syndrome. In addition, iris images taken in uncooperative settings frequently have negative noise, making it difficult to segment them precisely. The traditional diagnosis processes are costly and time consuming since they require highly qualified personnel and have strict environments. This paper presents an explainable deep learning model integrated with a multiclass support vector machine to analyze iris cellular images for early pigment spot segmentation and classification. Three benchmark datasets MILE, UPOL, and Eyes SUB were used in the experiments to test the proposed methodology. The experimental results are compared on standard metrics, demonstrating that the proposed model outperformed the methods reported in the literature regarding classification errors. Additionally, it is observed that the proposed parameters are highly effective in locating the micro pigment spots on the iris surfaces.

4.
Sensors (Basel) ; 23(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765754

RESUMEN

Cardiac disorders are a leading cause of global casualties, emphasizing the need for the initial diagnosis and prevention of cardiovascular diseases (CVDs). Electrocardiogram (ECG) procedures are highly recommended as they provide crucial cardiology information. Telemedicine offers an opportunity to provide low-cost tools and widespread availability for CVD management. In this research, we proposed an IoT-based monitoring and detection system for cardiac patients, employing a two-stage approach. In the initial stage, we used a routing protocol that combines routing by energy and link quality (REL) with dynamic source routing (DSR) to efficiently collect data on an IoT healthcare platform. The second stage involves the classification of ECG images using hybrid-based deep features. Our classification system utilizes the "ECG Images dataset of Cardiac Patients", comprising 12-lead ECG images with four distinct categories: abnormal heartbeat, myocardial infarction (MI), previous history of MI, and normal ECG. For feature extraction, we employed a lightweight CNN, which automatically extracts relevant ECG features. These features were further optimized through an attention module, which is the method's main focus. The model achieved a remarkable accuracy of 98.39%. Our findings suggest that this system can effectively aid in the identification of cardiac disorders. The proposed approach combines IoT, deep learning, and efficient routing protocols, showcasing its potential for improving CVD diagnosis and management.


Asunto(s)
Cardiopatías , Infarto del Miocardio , Telemedicina , Humanos , Electrocardiografía , Frecuencia Cardíaca
5.
Biomedicines ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37238994

RESUMEN

Viruses infect millions of people worldwide each year, and some can lead to cancer or increase the risk of cancer. As viruses have highly mutable genomes, new viruses may emerge in the future, such as COVID-19 and influenza. Traditional virology relies on predefined rules to identify viruses, but new viruses may be completely or partially divergent from the reference genome, rendering statistical methods and similarity calculations insufficient for all genome sequences. Identifying DNA/RNA-based viral sequences is a crucial step in differentiating different types of lethal pathogens, including their variants and strains. While various tools in bioinformatics can align them, expert biologists are required to interpret the results. Computational virology is a scientific field that studies viruses, their origins, and drug discovery, where machine learning plays a crucial role in extracting domain- and task-specific features to tackle this challenge. This paper proposes a genome analysis system that uses advanced deep learning to identify dozens of viruses. The system uses nucleotide sequences from the NCBI GenBank database and a BERT tokenizer to extract features from the sequences by breaking them down into tokens. We also generated synthetic data for viruses with small sample sizes. The proposed system has two components: a scratch BERT architecture specifically designed for DNA analysis, which is used to learn the next codons unsupervised, and a classifier that identifies important features and understands the relationship between genotype and phenotype. Our system achieved an accuracy of 97.69% in identifying viral sequences.

6.
Comput Intell Neurosci ; 2022: 1100775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188701

RESUMEN

Breast cancer is the primary health issue that women may face at some point in their lifetime. This may lead to death in severe cases. A mammography procedure is used for finding suspicious masses in the breast. Teleradiology is employed for online treatment and diagnostics processes due to the unavailability and shortage of trained radiologists in backward and remote areas. The availability of online radiologists is uncertain due to inadequate network coverage in rural areas. In such circumstances, the Computer-Aided Diagnosis (CAD) framework is useful for identifying breast abnormalities without expert radiologists. This research presents a decision-making system based on IoMT (Internet of Medical Things) to identify breast anomalies. The proposed technique encompasses the region growing algorithm to segment tumor that extracts suspicious part. Then, texture and shape-based features are employed to characterize breast lesions. The extracted features include first and second-order statistics, center-symmetric local binary pattern (CS-LBP), a histogram of oriented gradients (HOG), and shape-based techniques used to obtain various features from the mammograms. Finally, a fusion of machine learning algorithms including K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA are employed to classify breast cancer using composite feature vectors. The experimental results exhibit the proposed framework's efficacy that separates the cancerous lesions from the benign ones using 10-fold cross-validations. The accuracy, sensitivity, and specificity attained are 96.3%, 94.1%, and 98.2%, respectively, through shape-based features from the MIAS database. Finally, this research contributes a model with the ability for earlier and improved accuracy of breast tumor detection.


Asunto(s)
Neoplasias de la Mama , Mamografía , Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Computador/métodos , Femenino , Humanos , Internet , Mamografía/métodos , Máquina de Vectores de Soporte
7.
Comput Intell Neurosci ; 2022: 7403302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093488

RESUMEN

Breast cancer is common among women all over the world. Early identification of breast cancer lowers death rates. However, it is difficult to determine whether these are cancerous or noncancerous lesions due to their inconsistencies in image appearance. Machine learning techniques are widely employed in imaging analysis as a diagnostic method for breast cancer classification. However, patients cannot take advantage of remote areas as these systems are unavailable on clouds. Thus, breast cancer detection for remote patients is indispensable, which can only be possible through cloud computing. The user is allowed to feed images into the cloud system, which is further investigated through the computer aided diagnosis (CAD) system. Such systems could also be used to track patients, older adults, especially with disabilities, particularly in remote areas of developing countries that do not have medical facilities and paramedic staff. In the proposed CAD system, a fusion of AlexNet architecture and GLCM (gray-level cooccurrence matrix) features are used to extract distinguishable texture features from breast tissues. Finally, to attain higher precision, an ensemble of MK-SVM is used. For testing purposes, the proposed model is applied to the MIAS dataset, a commonly used breast image database, and achieved 96.26% accuracy.


Asunto(s)
Neoplasias de la Mama , Máquina de Vectores de Soporte , Anciano , Neoplasias de la Mama/diagnóstico por imagen , Nube Computacional , Diagnóstico por Computador/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
8.
Comput Intell Neurosci ; 2022: 1672677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965760

RESUMEN

Hypertension is the main cause of blood pressure (BP), which further causes various cardiovascular diseases (CVDs). The recent COVID-19 pandemic raised the burden on the healthcare system and also limits the resources to these patients only. The treatment of chronic patients, especially those who suffer from CVD, has fallen behind, resulting in increased deaths from CVD around the world. Regular monitoring of BP is crucial to prevent CVDs as it can be controlled and diagnosed through constant monitoring. To find an effective and convenient procedure for the early diagnosis of CVDs, photoplethysmography (PPG) is recognized as a low-cost technology. Through PPG technology, various cardiovascular parameters, including blood pressure, heart rate, blood oxygen saturation, etc., are detected. Merging the healthcare domain with information technology (IT) is a demanding area to reduce the rehospitalization of CVD patients. In the proposed model, PPG signals from the Internet of things (IoT)-enabled wearable patient monitoring (WPM) devices are used to monitor the heart rate (HR), etc., of the patients remotely. This article investigates various machine learning techniques such as decision tree (DT), naïve Bayes (NB), and support vector machine (SVM) and the deep learning model one-dimensional convolutional neural network-long short-term memory (1D CNN-LSTM) to develop a system that assists physicians during continuous monitoring, which achieved an accuracy of 99.5% using PPG-BP data set. The proposed system provides cost-effective, efficient, and fully connected monitoring systems for cardiac patients.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Teorema de Bayes , COVID-19/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Nube Computacional , Humanos , Aprendizaje Automático , Pandemias , Fotopletismografía/métodos
9.
Microsc Res Tech ; 85(11): 3600-3607, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35876390

RESUMEN

Skin cancer occurrences increase exponentially worldwide due to the lack of awareness of significant populations and skin specialists. Medical imaging can help with early detection and more accurate diagnosis of skin cancer. The physicians usually follow the manual diagnosis method in their clinics but nonprofessional dermatologists sometimes affect the accuracy of the results. Thus, the automated system is required to assist physicians in diagnosing skin cancer at early stage precisely to decrease the mortality rate. This article presents an automatic skin lesions detection through a microscopic hybrid feature set and machine learning-based classification. The employment of deep features through AlexNet architecture with local optimal-oriented pattern can accurately predict skin lesions. The proposed model is tested on two open-access datasets PAD-UFES-20 and MED-NODE comprising melanoma and nevus images. Experimental results on both datasets exhibit the efficacy of hybrid features with the help of machine learning. Finally, the proposed model achieved 94.7% accuracy using an ensemble classifier. RESEARCH HIGHLIGHTS: The deep features accurately predicted skin lesions through AlexNet architecture with local optimal-oriented pattern. Proposed model is tested on two datasets PAD-UFES-20, MED-NODE comprising melanoma, nevus images and exhibited high accuracy.


Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Algoritmos , Humanos , Aprendizaje Automático , Melanoma/diagnóstico , Melanoma/patología , Nevo/diagnóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
10.
Microsc Res Tech ; 85(4): 1444-1453, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34908213

RESUMEN

Female accounts for approximately 50% of the total population worldwide and many of them had breast cancer. Computer-aided diagnosis frameworks could reduce the number of needless biopsies and the workload of radiologists. This research aims to detect benign and malignant tumors automatically using breast ultrasound (BUS) images. Accordingly, two pretrained deep convolutional neural network (CNN) models were employed for transfer learning using BUS images like AlexNet and DenseNet201. A total of 697 BUS images containing benign and malignant tumors are preprocessed and performed classification tasks using the transfer learning-based CNN models. The classification accuracy of the benign and malignant tasks is completed and achieved 92.8% accuracy using the DensNet201 model. The results thus achieved compared in state of the art using benchmark data set and concluded proposed model outperforms in accuracy from first stage breast tumor diagnosis. Finally, the proposed model could help radiologists diagnose benign and malignant tumors swiftly by screening suspected patients.


Asunto(s)
Neoplasias de la Mama , Redes Neurales de la Computación , Biopsia , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Diagnóstico por Computador , Femenino , Humanos , Aprendizaje Automático
11.
Sensors (Basel) ; 23(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36616873

RESUMEN

Modern technologies such as the Internet of Things (IoT) and physical systems used as navigation systems play an important role in locating a specific location in an unfamiliar environment. Due to recent technological developments, users can now incorporate these systems into mobile devices, which has a positive impact on the acceptance of navigational systems and the number of users who use them. The system that is used to find a specific location within a building is known as an indoor navigation system. In this study, we present a novel approach to adaptable and changeable multistory navigation systems that can be implemented in different environments such as libraries, grocery stores, shopping malls, and official buildings using facial and speech recognition with the help of voice broadcasting. We chose a library building for the experiment to help registered users find a specific book on different building floors. In the proposed system, to help the users, robots are placed on each floor of the building, communicating with each other, and with the person who needs navigational help. The proposed system uses an Android platform that consists of two separate applications: one for administration to add or remove settings and data, which in turn builds an environment map, while the second application is deployed on robots that interact with the users. The developed system was tested using two methods, namely system evaluation, and user evaluation. The evaluation of the system is based on the results of voice and face recognition by the user, and the model's performance relies on accuracy values obtained by testing out various values for the neural network parameters. The evaluation method adopted by the proposed system achieved an accuracy of 97.92% and 97.88% for both of the tasks. The user evaluation method using the developed Android applications was tested on multi-story libraries, and the results were obtained by gathering responses from users who interacted with the applications for navigation, such as to find a specific book. Almost all the users find it useful to have robots placed on each floor of the building for giving specific directions with automatic recognition and recall of what a person is searching for. The evaluation results show that the proposed system can be implemented in different environments, which shows its effectiveness.


Asunto(s)
Reconocimiento Facial , Internet de las Cosas , Voz , Humanos , Habla
12.
Microsc Res Tech ; 84(9): 2186-2194, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33908111

RESUMEN

Females are approximately half of the total population worldwide, and most of them are victims of breast cancer (BC). Computer-aided diagnosis (CAD) frameworks can help radiologists to find breast density (BD), which further helps in BC detection precisely. This research detects BD automatically using mammogram images based on Internet of Medical Things (IoMT) supported devices. Two pretrained deep convolutional neural network models called DenseNet201 and ResNet50 were applied through a transfer learning approach. A total of 322 mammogram images containing 106 fatty, 112 dense, and 104 glandular cases were obtained from the Mammogram Image Analysis Society dataset. The pruning out irrelevant regions and enhancing target regions is performed in preprocessing. The overall classification accuracy of the BD task is performed and accomplished 90.47% through DensNet201 model. Such a framework is beneficial in identifying BD more rapidly to assist radiologists and patients without delay.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Internet , Mamografía , Redes Neurales de la Computación
13.
Microsc Res Tech ; 84(6): 1296-1308, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33400339

RESUMEN

A brain tumor is an uncontrolled development of brain cells in brain cancer if not detected at an early stage. Early brain tumor diagnosis plays a crucial role in treatment planning and patients' survival rate. There are distinct forms, properties, and therapies of brain tumors. Therefore, manual brain tumor detection is complicated, time-consuming, and vulnerable to error. Hence, automated computer-assisted diagnosis at high precision is currently in demand. This article presents segmentation through Unet architecture with ResNet50 as a backbone on the Figshare data set and achieved a level of 0.9504 of the intersection over union (IoU). The preprocessing and data augmentation concept were introduced to enhance the classification rate. The multi-classification of brain tumors is performed using evolutionary algorithms and reinforcement learning through transfer learning. Other deep learning methods such as ResNet50, DenseNet201, MobileNet V2, and InceptionV3 are also applied. Results thus obtained exhibited that the proposed research framework performed better than reported in state of the art. Different CNN, models applied for tumor classification such as MobileNet V2, Inception V3, ResNet50, DenseNet201, NASNet and attained accuracy 91.8, 92.8, 92.9, 93.1, 99.6%, respectively. However, NASNet exhibited the highest accuracy.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico , Detección Precoz del Cáncer , Humanos , Redes Neurales de la Computación
14.
IT Prof ; 23(4): 57-62, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35582211

RESUMEN

The novel coronavirus named COVID-19 has quickly spread among humans worldwide, and the situation remains hazardous to the health system. The existence of this virus in the human body is identified through sputum or blood samples. Furthermore, computed tomography (CT) or X-ray has become a significant tool for quick diagnoses. Thus, it is essential to develop an online and real-time computer-aided diagnosis (CAD) approach to support physicians and avoid further spreading of the disease. In this research, a convolutional neural network (CNN) -based Residual neural network (ResNet50) has been employed to detect COVID-19 through chest X-ray images and achieved 98% accuracy. The proposed CAD system will receive the X-ray images from the remote hospitals/healthcare centers and perform diagnostic processes. Furthermore, the proposed CAD system uses advanced load balancer and resilience features to achieve fault tolerance with zero delays and perceives more infected cases during this pandemic.

15.
Curr Med Imaging ; 17(6): 686-694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334293

RESUMEN

Abnormal behaviors of tumors pose a risk to human survival. Thus, the detection of cancers at their initial stage is beneficial for patients and lowers the mortality rate. However, this can be difficult due to various factors related to imaging modalities, such as complex background, low contrast, brightness issues, poorly defined borders and the shape of the affected area. Recently, computer-aided diagnosis (CAD) models have been used to accurately diagnose tumors in different parts of the human body, especially breast, brain, lung, liver, skin and colon cancers. These cancers are diagnosed using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), colonoscopy, mammography, dermoscopy and histopathology. The aim of this review was to investigate existing approaches for the diagnosis of breast, brain, lung, liver, skin and colon tumors. The review focuses on decision-making systems, including handcrafted features and deep learning architectures for tumor detection.


Asunto(s)
Aprendizaje Automático , Neoplasias , Diagnóstico por Computador , Humanos , Mamografía , Neoplasias/diagnóstico , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA