Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 17(50): e2103885, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34647677

RESUMEN

The inherent flexibility of redox-active organic polymers and carbon-based fillers, combined with flexible current collectors (CCs) is ideal for the fabrication of flexible batteries. Herein, a one-step electrophoretic deposition of polyviologen (PV)/graphene-oxide (GO) aqueous composites onto a flexible mesh of 60 µm thick wires, 100 µm apart, is described. Notably, during electrodeposition, GO is transformed into conductive reduced GO (rGO), and nanoscopic pores are formed by self-assembly allowing charge/discharge of the redox sites over dozens of micrometers. Typically, electrodeposition of PV alone on a flat CC (FCC) is limited by its electrically insulating structure to ≈0.15 mAh cm-2 , but the presence of rGO allows thicker active layers without loss in (dis-)charging kinetics and reaching areal capacities of ≈2 mAh cm-2 . Remarkably, when the FCC is replaced by a mesh, the deposition of significantly more anode materials (≈5 mAh cm-2 ) is possible, while the (dis-)charging kinetics is considerably improved. It exhibits high capacity retention at an ultrafast rate of 100 C (<3%) and excellent bending stabilities. This represents the first combination of a microscopic-CC (mesh wires) with a molecular-electronic and -ionic conductor (rGO with its pores), i.e., a hierarchical-CC system with maximized polymer thickness and minimized wire thickness. The stacking of such modified grids paves the road to further increase the areal capacity.

2.
Angew Chem Int Ed Engl ; 60(24): 13554-13558, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33730408

RESUMEN

The first all-metallocene rechargeable battery consisting of poly-cobaltocenium/- and poly-ferrocene/reduced graphene oxide composites as anode and cathode was prepared. The intrinsically fast ET self-exchange rate of metallocenes was successfully combined with an efficient ion-percolation achieved by molecular self-assembly. The resulting battery materials show ideal Nernstian behavior, is thickness scalable up to >1.2 C cm-2 , and exhibit high coulombic efficiency at ultrafast rates (200 A g-1 ). Using aqueous LiClO4 , the charge is carried exclusively by the anion. The ClO4 - intercalation is accompanied by a reciprocal height change of the active layers. Principally, volume changes in organic battery materials during charging/discharging are not desirable and represent a major safety issue. However, here, the individual height changes-due to ion breathing-are reciprocal and thus prohibiting any internal pressure build-up in the closed-cell, leading to excellent cycling stability.

3.
Proc Natl Acad Sci U S A ; 115(51): E12111-E12120, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30514818

RESUMEN

Iron chronically limits aquatic photosynthesis, especially in marine environments, and the correct perception and maintenance of iron homeostasis in photosynthetic bacteria, including cyanobacteria, is therefore of global significance. Multiple adaptive mechanisms, responsive promoters, and posttranscriptional regulators have been identified, which allow cyanobacteria to respond to changing iron concentrations. However, many factors remain unclear, in particular, how iron status is perceived within the cell. Here we describe a cyanobacterial ferredoxin (Fed2), with a unique C-terminal extension, that acts as a player in iron perception. Fed2 homologs are highly conserved in photosynthetic organisms from cyanobacteria to higher plants, and, although they belong to the plant type ferredoxin family of [2Fe-2S] photosynthetic electron carriers, they are not involved in photosynthetic electron transport. As deletion of fed2 appears lethal, we developed a C-terminal truncation system to attenuate protein function. Disturbed Fed2 function resulted in decreased chlorophyll accumulation, and this was exaggerated in iron-depleted medium, where different truncations led to either exaggerated or weaker responses to low iron. Despite this, iron concentrations remained the same, or were elevated in all truncation mutants. Further analysis established that, when Fed2 function was perturbed, the classical iron limitation marker IsiA failed to accumulate at transcript and protein levels. By contrast, abundance of IsiB, which shares an operon with isiA, was unaffected by loss of Fed2 function, pinpointing the site of Fed2 action in iron perception to the level of posttranscriptional regulation.


Asunto(s)
Ferredoxinas/fisiología , Hierro/metabolismo , Fotosíntesis/fisiología , Synechocystis/fisiología , Adaptación Fisiológica , Clorofila/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Homeostasis/genética , Synechocystis/genética , Synechocystis/metabolismo
4.
ACS Appl Mater Interfaces ; 10(8): 7451-7458, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29384643

RESUMEN

Insect-inspired capillary submicron stamping and subsequent surface-limited metal-assisted chemical etching (MACE) with ammonium bifluoride as a HF source are employed for the high-throughput production of ordered topographically patterned silicon (tpSi). Insect feet often possess hairy contact elements through which adhesive secretion is deployed. Thus, arrays of adhesive secretion drops remain as footprints on contact surfaces. Stamps for insect-inspired capillary submicron stamping having surfaces topographically patterned with contact elements mimic the functional principles of such insect feet. They contain spongy continuous nanopore networks penetrating the entire stamps. Any ink (organic or aqueous) may be supplied from the backside of the nanoporous stamps to the contact elements. We generated ordered arrays of submicron AgNO3 dots extending square millimeters on Si by manual stamping with cycle times of a few seconds under ambient conditions; at higher load, ordered holey AgNO3 films were obtained. Surface-limited MACE correspondingly yielded either macroporous tpSi or Si pillar arrays. Inkjet printing of polymer solutions onto the tpSi yielded patterns of polymer blots conformally covering the tpSi. Such blot patterns could potentially represent a starting point for the development of persistent and scratch-resistant identity labels or quick response codes on silicon surfaces.


Asunto(s)
Silicio/química , Polímeros , Impresión , Silicio/uso terapéutico
5.
ACS Nano ; 11(9): 8730-8740, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28836762

RESUMEN

Four linear poly(viologens) (PV1, PV2: phenylic, PV3: benzylic, and PV4: aliphatic) in tight molecular contact with reduced graphene oxide (rGO), that is, PV@rGO, were prepared and used as anodic battery materials. These composites show exceptionally high, areal, volumetric, and current densities, for example, PV1@rGO composites (with 15 wt % rGO, corresponding to 137 mAh g-1) show 13.3 mAh cm-2 at 460 µm and 288 mAh cm-3 with 98% Coulombic efficiency at current densities up to 1000 A g-1, better than any reported organic materials. These remarkable performances are based on (i) molecular self-assembling of PVs on individual GO sheets yielding colloidal PV@GO and (ii) efficient GO/rGO transformation electrocatalyzed by PVs. Ion breathing during charging/discharging was studied by electrochemical quartz crystal microbalance and electrochemical atomic force microscopy revealing an absolute reversible and strongly anisotropic thickness oscillation of PV1@rGO at a right angle to the macroscopic current collector. It is proposed that such stress-free breathing is the key property for good cyclability of the battery material. The anisotropy is related to a puff paste architecture of rGO sheets parallel to the macroscopic current collector. A thin graphite sheet electrode with an areal capacity of 1.23 mAh cm-2 is stable over 200 bending cycles, making the material applicable for wearable electronics. The polymer acts as a lubricant between the rGO layers if shearing forces are active.

6.
ChemSusChem ; 8(18): 3099-110, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26276387

RESUMEN

The surface of steel S235 was oxidized by Cl2 gas and checked for its electrocatalytic efficiency regarding oxygen formation in aqueous solution. If exposed to humid Cl2 gas for 110 min, steel S235 became an electrocatalyst that exhibits an overpotential for the oxygen evolution reaction (OER) of 462 mV at 1 mA cm(-2) at pH 7. The OER activity of the same sample at pH 13 was moderate (347 mV overpotential at 2.0 mA cm(-2) current density) in comparison with OER electrocatalysts developed recently. Potential versus time plots measured at a constant current demonstrate the sufficient stability of all samples under catalysis conditions at pH 7 and 13 for tens of hours. High-resolution X-ray photoelectron spectra could be reasonably resolved with the proviso that Fe2 O3 , FeO(OH), MnO(OH), and Mn2 O3 are the predominant Fe and Mn species on the surface of the oxidized steel S235.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA